0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于增強(qiáng)型氮化鎵(eGaN?技術(shù))的電源轉(zhuǎn)換器設(shè)計(jì)

電子設(shè)計(jì) ? 來(lái)源:德州儀器(TI) ? 作者:德州儀器(TI) ? 2021-01-20 15:34 ? 次閱讀

來(lái)源:Alex Lidow,David Reusch,John Glaser

人類社會(huì)對(duì)信息的需求正以前所未有的速度增長(zhǎng)。隨著諸如云計(jì)算物聯(lián)網(wǎng)IoT)這些新興技術(shù)的發(fā)展,更快地接觸更多的信息這一趨勢(shì)并未顯示任何放緩跡象。高速率傳輸信息成為可能得益于機(jī)架和服務(wù)器機(jī)架,它們多數(shù)處于集中式數(shù)據(jù)中心。

2014年,數(shù)據(jù)中心(設(shè)在美國(guó))所消耗的能量約為1000億千瓦時(shí)(kWh),而國(guó)家科學(xué)研究開(kāi)發(fā)公司(NRDC)預(yù)計(jì)到2020年,數(shù)據(jù)中心電力消費(fèi)量每年將增至約1400億千瓦時(shí),相當(dāng)于50個(gè)發(fā)電站的年產(chǎn)量。

支持這一快速增長(zhǎng)需求所需電力來(lái)自我們的電網(wǎng),并經(jīng)過(guò)多次轉(zhuǎn)換階段,然后其才真正地將剩余能量饋進(jìn)數(shù)字半導(dǎo)體芯片。圖1所示為這一“旅程”的圖解。該圖中還顯示由傳輸和電力轉(zhuǎn)換造成的損失 – 從發(fā)電廠到所有工作的計(jì)算機(jī)芯片。

將這些效能數(shù)字相乘顯示,電網(wǎng)需要提供150瓦功率以滿足可能僅需要100瓦的數(shù)字芯片的需求。因此,在整個(gè)美國(guó),由于服務(wù)器用電源轉(zhuǎn)換造成的總浪費(fèi)電量為330億千瓦時(shí),這幾乎相當(dāng)于十幾個(gè)發(fā)電廠產(chǎn)出的電量。但是,服務(wù)器場(chǎng)中浪費(fèi)的總電量更多,因?yàn)橥ㄟ^(guò)電源轉(zhuǎn)換的每瓦功率損耗實(shí)際上是被轉(zhuǎn)換成熱能的能量,而除去該熱能需要更多功率。

pIYBAGAH3G-Acfp4AADTsAMCL18997.png

圖1:現(xiàn)代服務(wù)器場(chǎng)中使用的典型多級(jí)功率變換結(jié)構(gòu),它從電網(wǎng)中汲取150瓦的功率,為服務(wù)器中使用的數(shù)字處理器提供100瓦的電能。

然而,電網(wǎng)已經(jīng)存在了一個(gè)多世紀(jì),基于二戰(zhàn)后開(kāi)發(fā)的半導(dǎo)體技術(shù)已構(gòu)建轉(zhuǎn)換的各個(gè)階段。這些半導(dǎo)體基于硅晶體,正是硅的性能和局限性形成了圖1所示架構(gòu)。

在本文中,我們將演示基于增強(qiáng)型氮化鎵(eGaN?技術(shù))的電源轉(zhuǎn)換器的優(yōu)點(diǎn),其現(xiàn)有數(shù)據(jù)中心和集中于低至1VDC負(fù)載電壓的48 VDC輸入電壓所用的電信架構(gòu)解決方案。我們將探討高性能GaN功率晶體管的能力,以使用新方法以更高效率和更高功率密度為功率數(shù)據(jù)中心和電信系統(tǒng)提供電源。此方法在效率和功率密度方面都比先前的基于Si MOSFET的架構(gòu)更高。

從48 VIN– 1 VOUT直接獲取

自采用12 V中間總線架構(gòu)(IBA)以來(lái),此總線轉(zhuǎn)換器在輸出功率中正接近數(shù)量級(jí)的提高。在型電源模塊足跡中,現(xiàn)行設(shè)計(jì)從約100W增至約1千瓦。這意味著至POL轉(zhuǎn)換器的12V總線上的電流量以10的系數(shù)增加,而且不用降低總線電阻,隨后的總線傳導(dǎo)損耗中會(huì)以2的數(shù)量級(jí)增加。相比傳統(tǒng)的IBA系統(tǒng)中的硅基解決方案,GaN基技術(shù)的解決方案已證明其效率顯著提高。

然而,隨著48 VIN總線轉(zhuǎn)換器的轉(zhuǎn)換損耗不斷增加,主板上不斷攀升的12V總線損及GaN技術(shù)更高的性能,現(xiàn)可考慮不同的體系結(jié)構(gòu),如使用非隔離型POL轉(zhuǎn)換器從48 VIN直接進(jìn)入負(fù)載,如圖2底部所示。

o4YBAGAH3IOAFs-vAAD5-aGZAOs650.png

圖2:中間總線架構(gòu)(IBA)和直接轉(zhuǎn)換DC總線結(jié)構(gòu)。

傳統(tǒng)型降壓轉(zhuǎn)換器可作為第一種方法來(lái)評(píng)估將48 VIN直接轉(zhuǎn)換為1 VOUT。降壓轉(zhuǎn)換器的拓?fù)浣Y(jié)構(gòu)最簡(jiǎn)單,而且是絕大多數(shù)現(xiàn)有12 VIN系統(tǒng)采用的做法。對(duì)于48 V輸入,在EPC9041演示板中嵌入的80V eGaN單片式半橋集成電路(EPC2105)可選定用于具有更高降壓比的應(yīng)用。TI采用的第二種方法是將48 VIN直接轉(zhuǎn)換到1 VOUT,其采用基于變壓器的設(shè)計(jì)來(lái)提高轉(zhuǎn)換器效率。一個(gè)基于LMG5200 GaN的半橋被用于48 VIN輸入側(cè),而四個(gè)30 V EPC2023 eGaN FET被用于低電壓輸出側(cè)。

兩種48 VIN至1 VOUT設(shè)計(jì)的高效率和功率密度如圖3所示。降壓轉(zhuǎn)換器的效率是整個(gè)動(dòng)力傳動(dòng)系的效率,包括電感器(Würth Elektronik 744 301 033)、電容器和印刷電路板損失。在300kHz的開(kāi)關(guān)頻率條件下,可實(shí)現(xiàn)84%的最高效率,而在20 A條件下,實(shí)現(xiàn)的效率約為83.5%。降壓構(gòu)件(不包括控制器)的功率密度約為300 W/in3。對(duì)于600 kHz條件下操作的基于變壓器的方法,可實(shí)現(xiàn)超過(guò)90%的效率,而在50 A輸出電流條件下,可實(shí)現(xiàn)近88%的效率。對(duì)于基于變壓器的構(gòu)件(不包括控制器),功率密度為約80 W/in3。

pIYBAGAH3M2AMTmyAAJV-Q3DOJ0106.png

圖3:基于eGaN POL轉(zhuǎn)換器的效率和功率密度,VIN = 48 V至VOUT = 1V。

使用圖4所示的基于GaN技術(shù)的最佳設(shè)計(jì),對(duì)比單級(jí)48 VIN至1 VOUT的POL轉(zhuǎn)換器和傳統(tǒng)兩級(jí)IBA法的預(yù)計(jì)效率和功率密度,并在表1總結(jié)(硅基解決方案遠(yuǎn)不及這些基于GaN技術(shù)的解決方案有效)。基于GaN集成電路的IBA電源轉(zhuǎn)換器比基于降壓的方法的48 VIN?1 VOUT直接轉(zhuǎn)換預(yù)計(jì)會(huì)有1.5%的效率提升。然而,當(dāng)12V總線的損失增加約2%時(shí),總體系統(tǒng)效率極其相似。傳統(tǒng)IBA法和48 VIN直接轉(zhuǎn)換基于降壓的方法也有類似的功率密度。對(duì)于48 VIN基于變壓器的方法,系統(tǒng)效率比傳統(tǒng)IBA法高出7%,該系統(tǒng)具有低功率密度,比常規(guī)IBA基于GaN的方法低約三分之一。

DC總線架構(gòu)還具有潛在的成本優(yōu)勢(shì),因?yàn)镮BC的成本可省去。而48 VIN POL轉(zhuǎn)換器與12 VIN POL轉(zhuǎn)換器相比,增加的成本將降至最低,因?yàn)樗鼈兪褂玫碾娫囱b置、控制器和驅(qū)動(dòng)程序的數(shù)量類似。

o4YBAGAH3N2Acs-0AAMfVkYvdAY351.png

圖4:基于GaN技術(shù)的48 VIN中間總線架構(gòu)和48 VIN DC總線架構(gòu)的性能對(duì)比

pIYBAGAH3PaAFGmlAAI7Pt7yA7Y772.png

(a) 縮放到500瓦的輸出功率。

表1:48 VIN中間總線架構(gòu)和48 VIN DC總線架構(gòu)的性能對(duì)比總結(jié)

圖5中,我們?cè)诨趀GaN FET和集成電路的設(shè)計(jì)中應(yīng)用單級(jí)效率的同時(shí)需要重新查看圖1內(nèi)容。通過(guò)省去服務(wù)器場(chǎng)電源架構(gòu)末級(jí)所獲得的直接節(jié)省電能不僅降低了成本,而且還降低7%到15%不等的功耗,這取決于基于GaN的方法。與硅基解決方案對(duì)比時(shí),這關(guān)聯(lián)到每年直接節(jié)約的多達(dá)210億千瓦時(shí)的電能。當(dāng)服務(wù)器場(chǎng)中的空調(diào)能源成本增加時(shí),還可節(jié)約更多電能,僅在美國(guó)可將總節(jié)約電能降至服務(wù)器所耗1400億千瓦時(shí)的近25%。

結(jié)論

當(dāng)今美國(guó)服務(wù)器場(chǎng)中可能的節(jié)省電能所造成的影響甚至比后硅世界中eGaN技術(shù)的影響更大,而此影響的一個(gè)示例是這一新興技術(shù)可有效使用電力。eGaN技術(shù)為更高性能的半導(dǎo)體提供了一個(gè)途徑,重新開(kāi)啟了推動(dòng)創(chuàng)新的摩爾定律的可能性——就像摩爾定律超出常規(guī)一樣。例如,eGaN技術(shù)實(shí)現(xiàn)了許多新應(yīng)用,如無(wú)線電力傳輸、5G蜂窩技術(shù)、自主車輛和結(jié)腸鏡檢查丸劑。而且,隨著電子行業(yè)在固有屬性中獲得的高性能功能能力的經(jīng)驗(yàn)和知識(shí),由此產(chǎn)生的高性能eGaN半導(dǎo)體設(shè)備將實(shí)現(xiàn)很多不可預(yù)見(jiàn)的應(yīng)用,就像二戰(zhàn)后時(shí)代帶來(lái)的此應(yīng)用的前身——硅。

eGaN?FET是Efficient Power Conversion公司的注冊(cè)商標(biāo)。

一般參考

[1] D. REUSCH和J.Glaser,DC-DC轉(zhuǎn)換器手冊(cè),電源轉(zhuǎn)換出版物,2015年
編輯:hfy

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 服務(wù)器
    +關(guān)注

    關(guān)注

    12

    文章

    8859

    瀏覽量

    84957
  • 電源轉(zhuǎn)換器
    +關(guān)注

    關(guān)注

    4

    文章

    305

    瀏覽量

    34496
  • 氮化鎵
    +關(guān)注

    關(guān)注

    59

    文章

    1583

    瀏覽量

    115988
  • 數(shù)字芯片
    +關(guān)注

    關(guān)注

    1

    文章

    105

    瀏覽量

    18356
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    CoolGaN和增強(qiáng)型GaN區(qū)別是什么

    : 定義 :CoolGaN是英飛凌(Infineon)公司推出的一系列基于氮化(GaN)技術(shù)的產(chǎn)品品牌或系列名稱。它代表了英飛凌在GaN功率器件領(lǐng)域的技術(shù)成果和產(chǎn)品線。 范疇 :C
    的頭像 發(fā)表于 09-07 09:28 ?320次閱讀

    采用小型直流/直流轉(zhuǎn)換器進(jìn)行設(shè)計(jì):HotRod? QFN與增強(qiáng)型HotRod? QFN封裝

    電子發(fā)燒友網(wǎng)站提供《采用小型直流/直流轉(zhuǎn)換器進(jìn)行設(shè)計(jì):HotRod? QFN與增強(qiáng)型HotRod? QFN封裝.pdf》資料免費(fèi)下載
    發(fā)表于 08-26 11:20 ?0次下載
    采用小型直流/直流<b class='flag-5'>轉(zhuǎn)換器</b>進(jìn)行設(shè)計(jì):HotRod? QFN與<b class='flag-5'>增強(qiáng)型</b>HotRod? QFN封裝

    AMC3336具有集成直流/直流轉(zhuǎn)換器的高精度、±1V輸入增強(qiáng)型隔離式Δ-Σ調(diào)制數(shù)據(jù)表

    電子發(fā)燒友網(wǎng)站提供《AMC3336具有集成直流/直流轉(zhuǎn)換器的高精度、±1V輸入增強(qiáng)型隔離式Δ-Σ調(diào)制數(shù)據(jù)表.pdf》資料免費(fèi)下載
    發(fā)表于 08-16 11:17 ?0次下載
    AMC3336具有集成直流/直流<b class='flag-5'>轉(zhuǎn)換器</b>的高精度、±1V輸入<b class='flag-5'>增強(qiáng)型</b>隔離式Δ-Σ調(diào)制<b class='flag-5'>器</b>數(shù)據(jù)表

    氮化(GaN)的最新技術(shù)進(jìn)展

    寬禁帶半導(dǎo)體,徹底改變了傳統(tǒng)電力電子技術(shù)。氮化技術(shù)使移動(dòng)設(shè)備的快速充電成為可能。氮化器件經(jīng)常
    的頭像 發(fā)表于 07-06 08:13 ?692次閱讀
    <b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>(GaN)的最新<b class='flag-5'>技術(shù)</b>進(jìn)展

    淺談光耦與氮化快充技術(shù)的創(chuàng)新融合

    氮化快充技術(shù)主要通過(guò)將氮化功率器件應(yīng)用于充電器、電源適配器等充電設(shè)備中,以提高充電效率和充電
    的頭像 發(fā)表于 06-26 11:15 ?310次閱讀
    淺談光耦與<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>快充<b class='flag-5'>技術(shù)</b>的創(chuàng)新融合

    ESD抗擾度增強(qiáng)型TPS23753A IEEE 802.3 PoE接口和轉(zhuǎn)換器控制數(shù)據(jù)表

    電子發(fā)燒友網(wǎng)站提供《ESD抗擾度增強(qiáng)型TPS23753A IEEE 802.3 PoE接口和轉(zhuǎn)換器控制數(shù)據(jù)表.pdf》資料免費(fèi)下載
    發(fā)表于 03-28 13:56 ?0次下載
    ESD抗擾度<b class='flag-5'>增強(qiáng)型</b>TPS23753A IEEE 802.3 PoE接口和<b class='flag-5'>轉(zhuǎn)換器</b>控制<b class='flag-5'>器</b>數(shù)據(jù)表

    氮化是什么結(jié)構(gòu)的材料

    的結(jié)構(gòu)通常采用六方晶系,屬于閃鋅礦結(jié)構(gòu)。在氮化晶體中,原子和氮原子交替排列,形成緊密堆積的晶格結(jié)構(gòu)。氮化
    的頭像 發(fā)表于 01-10 10:18 ?2826次閱讀

    氮化芯片用途有哪些

    電源管理和變換 GaN芯片主要用于電源管理和變換領(lǐng)域,用于提供高效能的能源轉(zhuǎn)換,例如從交流到直流的
    的頭像 發(fā)表于 01-10 10:13 ?1258次閱讀

    氮化mos管型號(hào)有哪些

    應(yīng)用領(lǐng)域具有很大的潛力。 以下是一些常見(jiàn)的氮化MOS管型號(hào): EPC2001:EPC2001是一種高性能非晶硅氮化MOS管,具有低導(dǎo)通電阻、高開(kāi)關(guān)速度和優(yōu)秀的熱特性。它適用于
    的頭像 發(fā)表于 01-10 09:32 ?1860次閱讀

    氮化技術(shù)的用處是什么

    氮化技術(shù)(GaN技術(shù))是一種基于氮化材料的半導(dǎo)體技術(shù)
    的頭像 發(fā)表于 01-09 18:06 ?1530次閱讀

    氮化是什么材料提取的 氮化是什么晶體類型

    氮化是什么材料提取的 氮化是一種新型的半導(dǎo)體材料,需要選用高純度的金屬和氨氣作為原料提取,具有優(yōu)異的物理和化學(xué)性能,廣泛應(yīng)用于電子、通
    的頭像 發(fā)表于 11-24 11:15 ?2488次閱讀

    什么是氮化 氮化電源優(yōu)缺點(diǎn)

    的能隙很寬,為3.4電子伏特,可以用在高功率、高速的光電元件中,例如氮化可以用在紫光的激光二極管,可以在不使用非線性半導(dǎo)體泵浦固體激光(Diode-pumped solid-state laser)的條件下,產(chǎn)生紫光(405
    的頭像 發(fā)表于 11-24 11:05 ?2456次閱讀

    氮化芯片是什么?氮化芯片優(yōu)缺點(diǎn) 氮化芯片和硅芯片區(qū)別

    氮化芯片是什么?氮化芯片優(yōu)缺點(diǎn) 氮化芯片和硅芯片區(qū)別?
    的頭像 發(fā)表于 11-21 16:15 ?5399次閱讀

    增強(qiáng)型IEC插座電源濾波介紹

    增強(qiáng)型IEC插座電源濾波是一種用于電源線路的電磁干擾濾波,能夠有效地抑制電磁干擾、提高供電質(zhì)量的裝置。
    的頭像 發(fā)表于 11-08 10:13 ?872次閱讀

    氮化(GaN)寬帶隙技術(shù)電源應(yīng)用設(shè)計(jì)

    隨著世界希望電氣化有助于有效利用能源并轉(zhuǎn)向可再生能源,氮化(GaN)等寬帶隙半導(dǎo)體技術(shù)的時(shí)機(jī)已經(jīng)成熟。傳統(tǒng)硅MOSFET和IGBT的性能現(xiàn)在接近材料的理論極限,進(jìn)一步發(fā)展只是以緩慢和高成本實(shí)現(xiàn)微小
    的頭像 發(fā)表于 10-25 16:24 ?1355次閱讀
    <b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>(GaN)寬帶隙<b class='flag-5'>技術(shù)</b>的<b class='flag-5'>電源</b>應(yīng)用設(shè)計(jì)