0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

AI芯片到底是什么

454398 ? 來源:ST社區(qū) ? 作者:ST社區(qū) ? 2022-11-28 11:56 ? 次閱讀

來源:ST社區(qū)

2010年以來,由于大數(shù)據(jù)產(chǎn)業(yè)的發(fā)展,數(shù)據(jù)量呈現(xiàn)爆炸性增長態(tài)勢,而傳統(tǒng)的計算架構(gòu)又無法支撐深度學(xué)習(xí)的大規(guī)模并行計算需求,于是研究界對AI芯片進(jìn)行了新一輪的技術(shù)研發(fā)與應(yīng)用研究。這一新興技術(shù)既為科技巨頭的業(yè)務(wù)升級和拓展帶來轉(zhuǎn)機,也給了新創(chuàng)企業(yè)顛覆現(xiàn)有格局的機會。

AI芯片是人工智能時代的技術(shù)核心之一,決定了平臺的基礎(chǔ)架構(gòu)和發(fā)展生態(tài)。作為人工智能產(chǎn)業(yè)的重中之重,AI芯片已經(jīng)成了最熱門的投資領(lǐng)域,各種AI芯片層出不窮。

從廣義上講,只要能夠運行人工智能算法的芯片都叫作AI芯片。但是通常意義上的AI芯片指的是針對人工智能算法做了特殊加速設(shè)計的芯片,現(xiàn)階段,這些人工智能算法一般以深度學(xué)習(xí)算法為主,也可以包括其它機器學(xué)習(xí)算法。

一般來說,所謂的AI芯片,是指針對AI算法的ASIC(專用芯片)。傳統(tǒng)的CPU、GPU都可以拿來執(zhí)行AI算法,但是速度慢,性能低,無法實際商用。

比如,自動駕駛需要識別道路行人紅綠燈等狀況,但是如果是當(dāng)前的CPU去算,那么估計車翻到河里了還沒發(fā)現(xiàn)前方是河,這是速度慢,時間就是生命。如果用GPU,的確速度要快得多,但是,功耗大,汽車的電池估計無法長時間支撐正常使用,而且, GPU巨貴,普通消費者也用不起。另外,GPU因為不是專門針對AI算法開發(fā)的ASIC,所以,說到底,速度還沒到極限,還有提升空間。而類似智能駕駛這樣的領(lǐng)域,必須快!在手機終端,可以自行人臉識別、語音識別等AI應(yīng)用,這個又必須功耗低。

AI芯片到底是什么?

回答這個問題之前,先來弄明白兩個概念,什么是CPU和GPU?

簡單來說,CPU就是手機的“大腦”,也是手機正常運行的“總指揮官”。GPU被翻譯成圖形處理器,主要工作確實是圖像處理。

再來說說CPU和GPU之間的分工,CPU遵循的是馮諾依曼架構(gòu),核心就是“存儲程序,順序執(zhí)行”,就像是做事一板一眼的管家,什么事情都要一步一步來。假如你讓CPU去種一棵樹,挖坑、澆水、植樹、封土等工作都要獨自一步一步進(jìn)行。

如果讓GPU去種一棵樹的話,會喊來小A、小B、小C等一同來完成,把挖坑、澆水、植樹、封土等工作分割成不同的子任務(wù)。這是因為GPU執(zhí)行的是并行運算,即把一個問題分解成若干個部分,各部分由獨立的計算單元去完成。恰好圖像處理的每一個像素點都需要被計算,與GPU的工作原理不謀而合。

就如同比方:CPU像是老教授,積分、微分什么都會算,但有些工作是計算大量一百以內(nèi)的加減乘除,最好的方法當(dāng)然不是讓老教授挨個算下去,而是雇上幾十個小學(xué)生把任務(wù)分配下去。這就是CPU和GPU的分工,CPU負(fù)責(zé)大型運算,GPU為圖像處理而生,從電腦智能手機都是如此。

但當(dāng)人工智能的需求出現(xiàn)后,CPU和GPU的分工就出現(xiàn)了問題,人工智能終端的深度學(xué)習(xí)和傳統(tǒng)計算不同,借由后臺預(yù)先從大量訓(xùn)練數(shù)據(jù)中總結(jié)出規(guī)律,得到可以給人工智能終端判定的參數(shù),比如訓(xùn)練樣本是人臉圖像數(shù)據(jù),實現(xiàn)的功能在終端上就是人臉識別。

CPU往往需要數(shù)百甚至上千條指令才能完成一個神經(jīng)元的處理,無法支撐起大規(guī)模的并行運算,而手機上的GPU又需要處理各種應(yīng)用的圖像處理需求。強行使用CPU和GPU進(jìn)行人工智能任務(wù),結(jié)果普遍是效率低下、發(fā)熱嚴(yán)重。

諸如蘋果A12、麒麟980和Exynos 9820提供的AI芯片的一種。通俗來說就是人工智能加速器,因為GPU是基于塊數(shù)據(jù)處理的,但手機上的AI應(yīng)用是需要實時處理的,人工智能加速器剛好解決了這個痛點,把深度學(xué)習(xí)相關(guān)的工作接管過來,從而緩解CPU 和GPU 的壓力。

它們將CPU和GPU的計算量分開,諸如面部識別、語音識別等AI相關(guān)的任務(wù)卸載到ASIC上處理,AI芯片核早已成為一種行業(yè)趨勢。

一方面AI芯片的價值在于與CPU、GPU進(jìn)行協(xié)同分工,CPU和GPU過多的任務(wù)堆疊只會虛耗電量、提高溫度。

另一方面在AI芯片的協(xié)同下,可以對用戶行為進(jìn)行學(xué)習(xí),進(jìn)而對用戶的使用場景進(jìn)行預(yù)測,然后進(jìn)行合理的性能分配。好比說當(dāng)你在游戲時讓CPU高效運算,而當(dāng)你在看電子書時避免性能浪費。

AI芯片發(fā)展歷程

從圖靈的論文《計算機器與智能》和圖靈測試,到最初級的神經(jīng)元模擬單元——感知機,再到現(xiàn)在多達(dá)上百層的深度神經(jīng)網(wǎng)絡(luò),人類對人工智能的探索從來就沒有停止過。上世紀(jì)八十年代,多層神經(jīng)網(wǎng)絡(luò)和反向傳播算法的出現(xiàn)給人工智能行業(yè)點燃了新的火花。反向傳播的主要創(chuàng)新在于能將信息輸出和目標(biāo)輸出之間的誤差通過多層網(wǎng)絡(luò)往前一級迭代反饋,將最終的輸出收斂到某一個目標(biāo)范圍之內(nèi)。1989年貝爾實驗室成功利用反向傳播算法,在多層神經(jīng)網(wǎng)絡(luò)開發(fā)了一個手寫郵編識別器。1998年Yann LeCun和Yoshua Bengio發(fā)表了手寫識別神經(jīng)網(wǎng)絡(luò)和反向傳播優(yōu)化相關(guān)的論文《Gradient-based learning applied to document recognition》,開創(chuàng)了卷積神經(jīng)網(wǎng)絡(luò)的時代。

此后,人工智能陷入了長時間的發(fā)展沉寂階段,直到1997年IBM的深藍(lán)戰(zhàn)勝國際象棋大師和2011年IBM的沃森智能系統(tǒng)在Jeopardy節(jié)目中勝出,人工智能才又一次為人們所關(guān)注。2016年Alpha Go擊敗韓國圍棋九段職業(yè)選手,則標(biāo)志著人工智能的又一波高潮。從基礎(chǔ)算法、底層硬件、工具框架到實際應(yīng)用場景,現(xiàn)階段的人工智能領(lǐng)域已經(jīng)全面開花。

作為人工智能核心的底層硬件AI芯片,也同樣經(jīng)歷了多次的起伏和波折,總體看來,AI芯片的發(fā)展前后經(jīng)歷了四次大的變化。

1、2007年以前,AI芯片產(chǎn)業(yè)一直沒有發(fā)展成為成熟的產(chǎn)業(yè);同時由于當(dāng)時算法、數(shù)據(jù)量等因素,這個階段AI芯片并沒有特別強烈的市場需求,通用的CPU芯片即可滿足應(yīng)用需要。

2、隨著高清視頻VR、AR游戲等行業(yè)的發(fā)展,GPU產(chǎn)品取得快速的突破;同時人們發(fā)現(xiàn)GPU的并行計算特性恰好適應(yīng)人工智能算法及大數(shù)據(jù)并行計算的需求,如GPU比之前傳統(tǒng)的CPU在深度學(xué)習(xí)算法的運算上可以提高幾十倍的效率,因此開始嘗試使用GPU進(jìn)行人工智能計算。

3、進(jìn)入2010年后,云計算廣泛推廣,人工智能的研究人員可以通過云計算借助大量CPU和GPU進(jìn)行混合運算,進(jìn)一步推進(jìn)了AI芯片的深入應(yīng)用,從而催生了各類AI芯片的研發(fā)與應(yīng)用。

4、人工智能對于計算能力的要求不斷快速地提升,進(jìn)入2015年后,GPU性能功耗比不高的特點使其在工作適用場合受到多種限制,業(yè)界開始研發(fā)針對人工智能的專用芯片,以期通過更好的硬件和芯片架構(gòu),在計算效率、能耗比等性能上得到進(jìn)一步提升。

AI芯片與普通芯片的區(qū)別在哪里?

AI算法,在圖像識別等領(lǐng)域,常用的是CNN卷積網(wǎng)絡(luò),語音識別、自然語言處理等領(lǐng)域,主要是RNN,這是兩類有區(qū)別的算法。但是,他們本質(zhì)上,都是矩陣或vector的乘法、加法,然后配合一些除法、指數(shù)等算法。

一個成熟的AI算法,比如YOLO-V3,就是大量的卷積、殘差網(wǎng)絡(luò)、全連接等類型的計算,本質(zhì)是乘法和加法。對于YOLO-V3來說,如果確定了具體的輸入圖形尺寸,那么總的乘法加法計算次數(shù)是確定的。比如一萬億次。(真實的情況比這個大得多的多)那么要快速執(zhí)行一次YOLO-V3,就必須執(zhí)行完一萬億次的加法乘法次數(shù)。

這個時候就來看了,比如IBM的POWER8,最先進(jìn)的服務(wù)器用超標(biāo)量CPU之一,4GHz,SIMD,128bit,假設(shè)是處理16bit的數(shù)據(jù),那就是8個數(shù),那么一個周期,最多執(zhí)行8個乘加計算。一次最多執(zhí)行16個操作。這還是理論上,其實是不大可能的。那么CPU一秒鐘的巔峰計算次數(shù)=16X4Gops=64Gops。這樣,可以算算CPU計算一次的時間了。同樣的,換成GPU算算,也能知道執(zhí)行時間。

再來說說AI芯片。比如大名鼎鼎的谷歌的TPU1。

TPU1,大約700M Hz,有256X256尺寸的脈動陣列,一共256X256=64K個乘加單元,每個單元一次可執(zhí)行一個乘法和一個加法。那就是128K個操作。(乘法算一個,加法再算一個)

另外,除了脈動陣列,還有其他模塊,比如激活等,這些里面也有乘法、加法等。所以,看看TPU1一秒鐘的巔峰計算次數(shù)至少是=128K X 700MHz=89600Gops=大約90Tops。對比一下CPU與TPU1,會發(fā)現(xiàn)計算能力有幾個數(shù)量級的差距,這就是為啥說CPU慢。

當(dāng)然,以上的數(shù)據(jù)都是完全最理想的理論值,實際情況,能夠達(dá)到5%吧。因為,芯片上的存儲不夠大,所以數(shù)據(jù)會存儲在DRAM中,從DRAM取數(shù)據(jù)很慢的,所以,乘法邏輯往往要等待。另外,AI算法有許多層網(wǎng)絡(luò)組成,必須一層一層的算,所以,在切換層的時候,乘法邏輯又是休息的,所以,諸多因素造成了實際的芯片并不能達(dá)到利潤的計算峰值,而且差距還極大。

目前來看,神經(jīng)網(wǎng)絡(luò)的尺寸是越來越大,參數(shù)越來越多,遇到大型NN模型,訓(xùn)練需要花幾周甚至一兩個月的時候。突然斷電,還得一切重來。修改了模型,需要幾個星期才能知道對錯,確定等得起?突然有了TPU,然后你發(fā)現(xiàn),吃個午飯回來就好了,參數(shù)優(yōu)化一下,繼續(xù)跑,多么爽!

總的來說,CPU與GPU并不是AI專用芯片,為了實現(xiàn)其他功能,內(nèi)部有大量其他邏輯,而這些邏輯對于目前的AI算法來說是完全用不上的,所以,自然造成CPU與GPU并不能達(dá)到最優(yōu)的性價比。

目前在圖像識別、語音識別、自然語言處理等領(lǐng)域,精度最高的算法就是基于深度學(xué)習(xí)的,傳統(tǒng)的機器學(xué)習(xí)的計算精度已經(jīng)被超越,目前應(yīng)用最廣的算法,估計非深度學(xué)習(xí)莫屬,而且,傳統(tǒng)機器學(xué)習(xí)的計算量與深度學(xué)習(xí)比起來少很多,所以,討論AI芯片時就針對計算量特別大的深度學(xué)習(xí)而言。畢竟,計算量小的算法,說實話,CPU已經(jīng)很快了。而且,CPU適合執(zhí)行調(diào)度復(fù)雜的算法,這一點是GPU與AI芯片都做不到的,所以他們?nèi)咧皇轻槍Σ煌膽?yīng)用場景而已,都有各自的主場。

AI芯片的分類及技術(shù)

人工智能芯片目前有兩種發(fā)展路徑:一種是延續(xù)傳統(tǒng)計算架構(gòu),加速硬件計算能力,主要以3種類型的芯片為代表,即GPU、FPGA、ASIC,但CPU依舊發(fā)揮著不可替代的作用;另一種是顛覆經(jīng)典的馮·諾依曼計算架構(gòu),采用類腦神經(jīng)結(jié)構(gòu)來提升計算能力,以IBM TrueNorth芯片為代表。

傳統(tǒng)的CPU

計算機工業(yè)從1960年代早期開始使用CPU這個術(shù)語。迄今為止,CPU從形態(tài)、設(shè)計到實現(xiàn)都已發(fā)生了巨大的變化,但是其基本工作原理卻一直沒有大的改變。通常CPU由控制器和運算器這兩個主要部件組成。傳統(tǒng)的CPU內(nèi)部結(jié)構(gòu)中,實質(zhì)上僅單獨的ALU模塊(邏輯運算單元)是用來完成數(shù)據(jù)計算的,其他各個模塊的存在都是為了保證指令能夠一條接一條的有序執(zhí)行。這種通用性結(jié)構(gòu)對于傳統(tǒng)的編程計算模式非常適合,同時可以通過提升CPU主頻(提升單位時間內(nèi)執(zhí)行指令的條數(shù))來提升計算速度。但對于深度學(xué)習(xí)中的并不需要太多的程序指令、卻需要海量數(shù)據(jù)運算的計算需求,這種結(jié)構(gòu)就顯得有些力不從心。尤其是在功耗限制下,無法通過無限制的提升CPU和內(nèi)存的工作頻率來加快指令執(zhí)行速度,這種情況導(dǎo)致CPU系統(tǒng)的發(fā)展遇到不可逾越的瓶頸。

并行加速計算的GPU

GPU作為最早從事并行加速計算的處理器,相比CPU速度快,同時比其他加速器芯片編程靈活簡單。

傳統(tǒng)的CPU之所以不適合人工智能算法的執(zhí)行,主要原因在于其計算指令遵循串行執(zhí)行的方式,沒能發(fā)揮出芯片的全部潛力。與之不同的是,GPU具有高并行結(jié)構(gòu),在處理圖形數(shù)據(jù)和復(fù)雜算法方面擁有比CPU更高的效率。對比GPU和CPU在結(jié)構(gòu)上的差異,CPU大部分面積為控制器和寄存器,而GPU擁有更ALU(ARITHMETIC LOGIC UNIT,邏輯運算單元)用于數(shù)據(jù)處理,這樣的結(jié)構(gòu)適合對密集型數(shù)據(jù)進(jìn)行并行處理。程序在GPU系統(tǒng)上的運行速度相較于單核CPU往往提升幾十倍乃至上千倍。隨著英偉達(dá)、AMD公司不斷推進(jìn)其對GPU大規(guī)模并行架構(gòu)的支持,面向通用計算的GPU(即GPGPU,GENERAL PURPOSE GPU,通用計算圖形處理器)已成為加速可并行應(yīng)用程序的重要手段。

目前,GPU已經(jīng)發(fā)展到較為成熟的階段。谷歌、FACEBOOK、微軟、TWITTER和百度等公司都在使用GPU分析圖片、視頻和音頻文件,以改進(jìn)搜索和圖像標(biāo)簽等應(yīng)用功能。此外,很多汽車生產(chǎn)商也在使用GPU芯片發(fā)展無人駕駛。不僅如此,GPU也被應(yīng)用于VR/AR相關(guān)的產(chǎn)業(yè)。但是GPU也有一定的局限性。深度學(xué)習(xí)算法分為訓(xùn)練和推斷兩部分,GPU平臺在算法訓(xùn)練上非常高效。但在推斷中對于單項輸入進(jìn)行處理的時候,并行計算的優(yōu)勢不能完全發(fā)揮出來。

半定制化的FPGA

FPGA是在PAL、GAL、CPLD等可編程器件基礎(chǔ)上進(jìn)一步發(fā)展的產(chǎn)物。用戶可以通過燒入FPGA配置文件來定義這些門電路以及存儲器之間的連線。這種燒入不是一次性的,比如用戶可以把FPGA配置成一個微控制器MCU,使用完畢后可以編輯配置文件把同一個FPGA配置成一個音頻編解碼器。因此,它既解決了定制電路靈活性的不足,又克服了原有可編程器件門電路數(shù)有限的缺點。

FPGA可同時進(jìn)行數(shù)據(jù)并行和任務(wù)并行計算,在處理特定應(yīng)用時有更加明顯的效率提升。對于某個特定運算,通用CPU可能需要多個時鐘周期;而FPGA可以通過編程重組電路,直接生成專用電路,僅消耗少量甚至一次時鐘周期就可完成運算。

此外,由于FPGA的靈活性,很多使用通用處理器或ASIC難以實現(xiàn)的底層硬件控制操作技術(shù),利用FPGA可以很方便的實現(xiàn)。這個特性為算法的功能實現(xiàn)和優(yōu)化留出了更大空間。同時FPGA一次性成本(光刻掩模制作成本)遠(yuǎn)低于ASIC,在芯片需求還未成規(guī)模、深度學(xué)習(xí)算法暫未穩(wěn)定,需要不斷迭代改進(jìn)的情況下,利用FPGA芯片具備可重構(gòu)的特性來實現(xiàn)半定制的人工智能芯片是最佳選擇之一。

功耗方面,從體系結(jié)構(gòu)而言,F(xiàn)PGA也具有天生的優(yōu)勢。傳統(tǒng)的馮氏結(jié)構(gòu)中,執(zhí)行單元(如CPU核)執(zhí)行任意指令,都需要有指令存儲器、譯碼器、各種指令的運算器及分支跳轉(zhuǎn)處理邏輯參與運行,而FPGA每個邏輯單元的功能在重編程(即燒入)時就已經(jīng)確定,不需要指令,無需共享內(nèi)存,從而可以極大的降低單位執(zhí)行的功耗,提高整體的能耗比。

由于FPGA具備靈活快速的特點,因此在眾多領(lǐng)域都有替代ASIC的趨勢。

全定制化的ASIC

目前以深度學(xué)習(xí)為代表的人工智能計算需求,主要采用GPU、FPGA等已有的適合并行計算的通用芯片來實現(xiàn)加速。在產(chǎn)業(yè)應(yīng)用沒有大規(guī)模興起之時,使用這類已有的通用芯片可以避免專門研發(fā)定制芯片(ASIC)的高投入和高風(fēng)險。但是,由于這類通用芯片設(shè)計初衷并非專門針對深度學(xué)習(xí),因而天然存在性能、功耗等方面的局限性。隨著人工智能應(yīng)用規(guī)模的擴(kuò)大,這類問題日益突顯。

GPU作為圖像處理器,設(shè)計初衷是為了應(yīng)對圖像處理中的大規(guī)模并行計算。因此,在應(yīng)用于深度學(xué)習(xí)算法時,有三個方面的局限性:第一,應(yīng)用過程中無法充分發(fā)揮并行計算優(yōu)勢。深度學(xué)習(xí)包含訓(xùn)練和推斷兩個計算環(huán)節(jié),GPU在深度學(xué)習(xí)算法訓(xùn)練上非常高效,但對于單一輸入進(jìn)行推斷的場合,并行度的優(yōu)勢不能完全發(fā)揮。第二,無法靈活配置硬件結(jié)構(gòu)。GPU采用SIMT計算模式,硬件結(jié)構(gòu)相對固定。目前深度學(xué)習(xí)算法還未完全穩(wěn)定,若深度學(xué)習(xí)算法發(fā)生大的變化,GPU無法像FPGA一樣可以靈活的配制硬件結(jié)構(gòu)。第三,運行深度學(xué)習(xí)算法能效低于FPGA。

盡管FPGA倍受看好,甚至新一代百度大腦也是基于FPGA平臺研發(fā),但其畢竟不是專門為了適用深度學(xué)習(xí)算法而研發(fā),實際應(yīng)用中也存在諸多局限:第一,基本單元的計算能力有限。為了實現(xiàn)可重構(gòu)特性,F(xiàn)PGA內(nèi)部有大量極細(xì)粒度的基本單元,但是每個單元的計算能力(主要依靠LUT查找表)都遠(yuǎn)遠(yuǎn)低于CPU和GPU中的ALU模塊;第二、計算資源占比相對較低。為實現(xiàn)可重構(gòu)特性,F(xiàn)PGA內(nèi)部大量資源被用于可配置的片上路由與連線;第三,速度和功耗相對專用定制芯片(ASIC)仍然存在不小差距;第四,F(xiàn)PGA價格較為昂貴,在規(guī)模放量的情況下單塊FPGA的成本要遠(yuǎn)高于專用定制芯片。

深度學(xué)習(xí)算法穩(wěn)定后,AI芯片可采用ASIC設(shè)計方法進(jìn)行全定制,使性能、功耗和面積等指標(biāo)面向深度學(xué)習(xí)算法做到最優(yōu)。

類腦芯片

類腦芯片不采用經(jīng)典的馮·諾依曼架構(gòu),而是基于神經(jīng)形態(tài)架構(gòu)設(shè)計,以IBM Truenorth為代表。IBM研究人員將存儲單元作為突觸、計算單元作為神經(jīng)元、傳輸單元作為軸突搭建了神經(jīng)芯片的原型。目前,Truenorth用三星28nm功耗工藝技術(shù),由54億個晶體管組成的芯片構(gòu)成的片上網(wǎng)絡(luò)有4096個神經(jīng)突觸核心,實時作業(yè)功耗僅為70mW。由于神經(jīng)突觸要求權(quán)重可變且要有記憶功能,IBM采用與CMOS工藝兼容的相變非揮發(fā)存儲器(PCM)的技術(shù)實驗性的實現(xiàn)了新型突觸,加快了商業(yè)化進(jìn)程。

AI芯片應(yīng)用領(lǐng)域

隨著人工智能芯片的持續(xù)發(fā)展,應(yīng)用領(lǐng)域會隨時間推移而不斷向多維方向發(fā)展。

智能手機

2017年9月,華為在德國柏林消費電子展發(fā)布了麒麟970芯片,該芯片搭載了寒武紀(jì)的NPU,成為“全球首款智能手機移動端AI芯片”;2017年10月中旬Mate10系列新品(該系列手機的處理器為麒麟970)上市。搭載了NPU的華為Mate10系列智能手機具備了較強的深度學(xué)習(xí)、本地端推斷能力,讓各類基于深度神經(jīng)網(wǎng)絡(luò)的攝影、圖像處理應(yīng)用能夠為用戶提供更加完美的體驗。

而蘋果發(fā)布以iPhone X為代表的手機及它們內(nèi)置的A11 Bionic芯片。A11 Bionic中自主研發(fā)的雙核架構(gòu)Neural Engine(神經(jīng)網(wǎng)絡(luò)處理引擎),它每秒處理相應(yīng)神經(jīng)網(wǎng)絡(luò)計算需求的次數(shù)可達(dá)6000億次。這個Neural Engine的出現(xiàn),讓A11 Bionic成為一塊真正的AI芯片。A11 Bionic大大提升了iPhone X在拍照方面的使用體驗,并提供了一些富有創(chuàng)意的新用法。

ADAS(高級輔助駕駛系統(tǒng))

ADAS是最吸引大眾眼球的人工智能應(yīng)用之一,它需要處理海量的由激光雷達(dá)、毫米波雷達(dá)、攝像頭等傳感器采集的實時數(shù)據(jù)。相對于傳統(tǒng)的車輛控制方法,智能控制方法主要體現(xiàn)在對控制對象模型的運用和綜合信息學(xué)習(xí)運用上,包括神經(jīng)網(wǎng)絡(luò)控制和深度學(xué)習(xí)方法等。

CV(計算機視覺(Computer Vision)設(shè)備

需要使用計算機視覺技術(shù)的設(shè)備,如智能攝像頭、無人機、行車記錄儀、人臉識別迎賓機器人以及智能手寫板等設(shè)備,往往都具有本地端推斷的需要,如果僅能在聯(lián)網(wǎng)下工作,無疑將帶來糟糕的體驗。而計算機視覺技術(shù)目前看來將會成為人工智能應(yīng)用的沃土之一,計算機視覺芯片將擁有廣闊的市場前景。

VR設(shè)備

VR設(shè)備芯片的代表為HPU芯片,是微軟為自身VR設(shè)備Hololens研發(fā)定制的。這顆由臺積電代工的芯片能同時處理來自5個攝像頭、1個深度傳感器以及運動傳感器的數(shù)據(jù),并具備計算機視覺的矩陣運算和CNN運算的加速功能。這使得VR設(shè)備可重建高質(zhì)量的人像3D影像,并實時傳送到任何地方。

語音交互設(shè)備

語音交互設(shè)備芯片方面,國內(nèi)有啟英泰倫以及云知聲兩家公司,其提供的芯片方案均內(nèi)置了為語音識別而優(yōu)化的深度神經(jīng)網(wǎng)絡(luò)加速方案,實現(xiàn)設(shè)備的語音離線識別。穩(wěn)定的識別能力為語音技術(shù)的落地提供了可能;與此同時,語音交互的核心環(huán)節(jié)也取得重大突破。語音識別環(huán)節(jié)突破了單點能力,從遠(yuǎn)場識別,到語音分析和語義理解有了重大突破,呈現(xiàn)出一種整體的交互方案。

機器人

無論是家居機器人還是商用服務(wù)機器人均需要專用軟件+芯片的人工智能解決方案,這方面典型公司有由前百度深度學(xué)習(xí)實驗室負(fù)責(zé)人余凱創(chuàng)辦的地平線機器人,當(dāng)然地平線機器人除此之外,還提供ADAS、智能家居等其他嵌入式人工智能解決方案。

審核編輯黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 芯片
    +關(guān)注

    關(guān)注

    452

    文章

    49938

    瀏覽量

    419593
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    29359

    瀏覽量

    267634
收藏 人收藏

    評論

    相關(guān)推薦

    功放和運放到底是什么區(qū)別?

    想請問一下功放和運放到底是什么區(qū)別,感覺只要接一個小負(fù)載,運放的輸出電流也可以很大?。?b class='flag-5'>到底有什么區(qū)別啊
    發(fā)表于 09-10 07:00

    如今火熱的AI芯片到底是什么

    眾所周知,人工智能的三大基礎(chǔ)要素是數(shù)據(jù)、算法和算力,而這三大要素的核心就是AI芯片技術(shù)。隨著各項基于AIGC前沿科技的廣泛應(yīng)用,AI對于算力的要求開始不斷地快速攀升。特別是深度學(xué)習(xí)成為當(dāng)前AI
    的頭像 發(fā)表于 09-06 10:10 ?388次閱讀

    運放的輸入電容到底是什么?

    我想請問一下運放的輸入電容到底是什么?
    發(fā)表于 09-04 06:52

    LMH6502的輸入電壓到底是多少?

    LMH6502的輸入電壓到底是多少,我稍微給如大一點點的信號,放大不行還能接受,我衰減都失真,
    發(fā)表于 08-27 07:02

    運放旁路電容必須靠近芯片引腳的原因到底是什么呢?

    運放旁路電容必須靠近芯片引腳的原因到底是什么呢?有的說是怕走線的電感與旁路電容形成諧振,旁路電容靠近運放的時候走線的電感不應(yīng)該更大了嗎(走線越長,走線的寄生電感也就越大)
    發(fā)表于 08-01 06:56

    共享單車到底是什么通信原理

    我們經(jīng)常騎的共享單車到底是什么通信原理,有人了解過嗎? 一、智能車鎖 共享單車最核心的硬件是智能車鎖,主要用于實現(xiàn)控制和定位功能。
    發(fā)表于 04-09 10:33 ?732次閱讀
    共享單車<b class='flag-5'>到底是</b>什么通信原理

    共享單車到底是什么通信原理?

    我們經(jīng)常騎的共享單車到底是什么通信原理,有人了解過嗎?下面寶藍(lán)小編就帶大家了解下。
    的頭像 發(fā)表于 02-25 10:32 ?1263次閱讀
    共享單車<b class='flag-5'>到底是</b>什么通信原理?

    邊緣AI到底是什么?能做什么?

    邊緣AI到底是什么?能做什么? 邊緣人工智能是一種新興的人工智能技術(shù),它將人工智能的計算和決策能力移動到離數(shù)據(jù)生成源和終端設(shè)備更近的邊緣節(jié)點上。與傳統(tǒng)的云計算方式相比,邊緣AI將計算和決策推向網(wǎng)絡(luò)
    的頭像 發(fā)表于 01-11 14:44 ?1165次閱讀

    OpenAI重金押注的 “類腦” AI芯片,到底是什么?

    Rain AI 是一家 AI 芯片初創(chuàng)公司,旨在大幅降低 AI 算力的成本。通過研發(fā)一種模仿人腦的工作方式的 AI
    的頭像 發(fā)表于 12-10 14:45 ?858次閱讀
    OpenAI重金押注的 “類腦” <b class='flag-5'>AI</b><b class='flag-5'>芯片</b>,<b class='flag-5'>到底是</b>什么?

    請問AD9684最低采樣率到底是多少?

    關(guān)于AD9684最低采樣率,數(shù)據(jù)手冊有兩處描述,但是不一致。請問AD9684最低采樣率到底是多少?
    發(fā)表于 12-04 06:34

    呼吸燈到底是如何影響人的視覺的?

    呼吸燈到底是通過使燈快速亮滅還是改變平均電壓來影響人的視覺的
    發(fā)表于 11-08 06:04

    請問單片機的中斷系統(tǒng)到底是什么?

    中斷系統(tǒng)到底是什么?還搞不定
    發(fā)表于 11-07 07:40

    上拉電阻到底是咋完成上拉的?。?/a>

    上拉電阻到底是咋完成上拉的啊
    發(fā)表于 10-31 06:52

    什么是虛擬線程?虛擬線程到底是做什么用的呢?

    虛擬線程是在Java并發(fā)領(lǐng)域添加的一個新概念,那么虛擬線程到底是做什么用的呢?
    的頭像 發(fā)表于 10-29 10:23 ?2998次閱讀
    什么是虛擬線程?虛擬線程<b class='flag-5'>到底是</b>做什么用的呢?

    單片機的“性能”到底是什么?

    單片機的“性能”到底是什么?
    的頭像 發(fā)表于 10-24 16:58 ?500次閱讀
    單片機的“性能”<b class='flag-5'>到底是</b>什么?