0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

多光子顯微鏡成像技術(shù):用于體內(nèi)神經(jīng)元成像的多種技術(shù)

電子設(shè)計 ? 來源:電子設(shè)計 ? 作者:電子設(shè)計 ? 2020-12-26 03:19 ? 次閱讀

與傳統(tǒng)的單光子寬視野熒光顯微鏡相比,多光子顯微鏡(MPM)具有光學切片和深層成像等功能,這兩個優(yōu)勢極大地促進了研究者們對于完整活體大腦深處神經(jīng)的了解與認識。2019年,Jerome Lecoq等人從大腦深處的神經(jīng)元成像、大量神經(jīng)元成像、高速神經(jīng)元成像這三個方面論述了相關(guān)的MPM技術(shù)[1]。

想要將神經(jīng)元活動與復雜行為聯(lián)系起來,通常需要對大腦皮質(zhì)深層的神經(jīng)元進行成像,這就要求MPM具有深層成像的能力。激發(fā)和發(fā)射光會被生物組織高度散射和吸收是限制MPM成像深度的主要因素,雖然可以通過增加激光強度來解決散射問題,但這會帶來其他問題,例如燒壞樣品、離焦和近表面熒光激發(fā)。增加MPM成像深度最好的方法是用更長的波長作為激發(fā)光。

另外,對于雙光子(2P)成像而言,離焦和近表面熒光激發(fā)是兩個最大的深度限制因素,而對于三光子(3P)成像這兩個問題大大減小,但是三光子成像由于熒光團的吸收截面比2P要小得多,所以需要更高數(shù)量級的脈沖能量才能獲得與2P激發(fā)的相同強度的熒光信號。功能性3P顯微鏡比結(jié)構(gòu)性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時采樣神經(jīng)元活動;需要更高的脈沖能量,以便在每個像素停留時間內(nèi)收集足夠的信號。

復雜的行為通常涉及到大型的大腦神經(jīng)網(wǎng)絡(luò),該網(wǎng)絡(luò)既具有局部的連接又具有遠程的連接。要想將神經(jīng)元活動與行為聯(lián)系起來,需要同時監(jiān)控非常龐大且分布廣泛的神經(jīng)元的活動,大腦中的神經(jīng)網(wǎng)絡(luò)會在幾十毫秒內(nèi)處理傳入的刺激,要想了解這種快速的神經(jīng)元動力學,就需要MPM具備對神經(jīng)元進行快速成像的能力。快速MPM方法可分為單束掃描技術(shù)和多束掃描技術(shù)。

單束掃描技術(shù)可以高速遍歷大視場(FOV)的神經(jīng)組織

使用MPM對神經(jīng)元進行成像時,通過隨機訪問掃描—即激光束在整個視場上的任意選定點上進行快速掃描—可以只掃描感興趣的神經(jīng)元,這樣不僅避免掃描到任何未標記的神經(jīng)纖維,還可以優(yōu)化激光束的掃描時間。隨機訪問掃描(圖1)可以通過聲光偏轉(zhuǎn)器(AOD)來實現(xiàn),其原理是將具有一個射頻信號的壓電傳感器粘在合適的晶體上,所產(chǎn)生的聲波引起周期性的折射率光柵,激光束通過光柵時發(fā)生衍射。通過射頻電信號調(diào)控聲波的強度和頻率從而可以改變衍射光的強度和方向,這樣使用1個AOD就可以實現(xiàn)一維橫向的任意點掃描,利用1對AOD,結(jié)合其他軸向掃描技術(shù)可實現(xiàn)3D的隨機訪問掃描。但是該技術(shù)對樣本的運動很敏感,易出現(xiàn)運動偽影。目前,快速光柵掃描即在FOV中進行逐行掃描,由于利用算法可以輕松解決運動偽影而被廣泛的使用。

圖1 基于AOD的體內(nèi)新皮層L2 / 3神經(jīng)元的雙光子成像[2]

快速光柵掃描有多種實現(xiàn)方式,使用振鏡進行快速2D掃描,將振鏡和可調(diào)電動透鏡結(jié)合在一起進行快速3D掃描,但可調(diào)電動透鏡由于機械慣性的限制在軸向無法快速進行焦點切換,影響成像速度,現(xiàn)可使用空間光調(diào)制器(SLM)代替。

遠程聚焦也是一種實現(xiàn)3D成像的手段,如圖2所示。在LSU模塊中,掃描振鏡進行橫向掃描, ASU模塊包括物鏡L1和反射鏡M,通過調(diào)控M的位置實現(xiàn)軸向掃描。該技術(shù)不僅可以校正主物鏡L2引入的光學像差,還可以進行快速的軸向掃描。想要獲得更多神經(jīng)元成像,可以通過調(diào)整顯微鏡的物鏡設(shè)計來擴大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動以進行快速軸向掃描,因此大型FOV系統(tǒng)依賴于遠程聚焦、SLM和可調(diào)電動透鏡。

圖2 遠程聚焦雙光子成像系統(tǒng)的示意圖[3]多束掃描技術(shù)可以同時對神經(jīng)元組織的不同位置進行成像

該技術(shù)如圖3所示。對兩個遠距離(相距大于1-2 mm)的成像部位,通常使用兩條獨立的路徑進行成像(圖3C,D);對于相鄰區(qū)域,通常使用單個物鏡的多光束進行成像(圖3E,F)。多光束掃描技術(shù)必須特別注意激發(fā)光束之間的串擾問題,這個問題可以通過事后光源分離方法或時空復用方法來解決。事后光源分離方法指的是用算法來分離光束消除串擾;時空復用方法指的是同時使用多個激發(fā)光束,每個光束的脈沖在時間上延遲,這樣就可以暫時分離被不同光束激發(fā)的單個熒光信號。引入越多路光束就可以對越多的神經(jīng)元進行成像,但是多路光束會導致熒光衰減時間的重疊增加,從而限制了區(qū)分信號源的能力;并且多路復用對電子設(shè)備的工作速率有很高的要求;大量的光束也需要更高的激光功率來維持近似單光束的信噪比,這會容易導致組織損傷。

圖3 大面積成像技術(shù)

近年來,不同的MPM技術(shù)的發(fā)展拓寬了我們對神經(jīng)組織的成像范圍,使得我們可以以更快的速度對大腦深處更多的神經(jīng)元進行成像,這大大推動了神經(jīng)科學的研究,使我們能夠?qū)δX功能有更清晰的理解。

審核編輯:符乾江


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 成像技術(shù)
    +關(guān)注

    關(guān)注

    4

    文章

    285

    瀏覽量

    31424
  • 顯微鏡
    +關(guān)注

    關(guān)注

    0

    文章

    509

    瀏覽量

    22930
收藏 人收藏

    評論

    相關(guān)推薦

    光子顯微成像激光調(diào)制解決方案

    技術(shù)的巨變中受益。 這些改進進一步推動了這種最初從物理實驗室中開發(fā)的技術(shù)向細胞生物學、疾病研究和高級神經(jīng)科學成像領(lǐng)域的滲透。 一體式可調(diào)諧鈦寶石激光器在 2001 年左右開始了這一趨勢。幾年后,激光器中增加了自動色散控制功能,以
    的頭像 發(fā)表于 09-23 06:28 ?101次閱讀
    雙<b class='flag-5'>光子</b><b class='flag-5'>顯微</b><b class='flag-5'>成像</b>激光調(diào)制解決方案

    什么是散射成像技術(shù)?

    的發(fā)展,而且在解決散射成像方面表現(xiàn)出了得天獨厚的優(yōu)勢。 在彈道光提取方面,自適應(yīng)光學成像技術(shù)、光學相干層析技術(shù)、共聚焦顯微
    的頭像 發(fā)表于 08-23 06:25 ?140次閱讀
    什么是散射<b class='flag-5'>成像</b><b class='flag-5'>技術(shù)</b>?

    具有非常高數(shù)值孔徑的反射顯微鏡系統(tǒng)

    摘要 在單分子顯微鏡成像應(yīng)用中,定位精度是一個關(guān)鍵問題。由于在某一方向上的定位精度與圖像在同一方向上的點擴散函數(shù)(point spread function, PSF)的寬度成正比,因此具有較高
    發(fā)表于 08-14 11:52

    共聚焦顯微鏡成像原理、功能、分辨率與優(yōu)勢解析

    在材料科學和精密工程領(lǐng)域,對微觀結(jié)構(gòu)的精確測量和分析至關(guān)重要。共聚焦顯微鏡作為一種高精度的成像技術(shù),為這些領(lǐng)域提供了強大的工具。共聚焦顯微鏡成像
    的頭像 發(fā)表于 06-14 09:28 ?1243次閱讀
    共聚焦<b class='flag-5'>顯微鏡</b>:<b class='flag-5'>成像</b>原理、功能、分辨率與優(yōu)勢解析

    光子顯微鏡探究斑馬魚的社會行為

    圖 1:多倫多大學所用光子顯微鏡系統(tǒng)中包括可調(diào)諧 激光器 (Coherent Discovery) 和固定波長激光器 (Coherent Axon),可節(jié)省寶貴的平臺空間,同時改善成像
    的頭像 發(fā)表于 05-22 06:39 ?164次閱讀
    <b class='flag-5'>多</b><b class='flag-5'>光子</b><b class='flag-5'>顯微鏡</b>探究斑馬魚的社會行為

    共聚焦、光學顯微鏡與測量顯微鏡的區(qū)分

    共聚焦顯微鏡是一種光學顯微鏡,也可以被稱為測量顯微鏡。在它用于精確測量樣品的尺寸、形狀、表面粗糙度或其他物理特性時,能夠提供非常精確的三維形貌圖像,這使得它成為測量樣品表面特征的強大工
    發(fā)表于 05-14 10:43 ?3次下載

    顯微成像與精密測量:共聚焦、光學顯微鏡與測量顯微鏡的區(qū)分

    共聚焦顯微鏡是一種光學顯微鏡,也可以被稱為測量顯微鏡。能夠進行二維和三維成像,是光學顯微鏡技術(shù)
    的頭像 發(fā)表于 05-11 11:38 ?698次閱讀
    <b class='flag-5'>顯微</b><b class='flag-5'>成像</b>與精密測量:共聚焦、光學<b class='flag-5'>顯微鏡</b>與測量<b class='flag-5'>顯微鏡</b>的區(qū)分

    使用光子糾纏的自適應(yīng)光學成像

    實驗裝置 研究人員表示,量子物理學的獨特特性可以幫助解決一個長期存在的問題,即阻止顯微鏡在最小尺度上產(chǎn)生更清晰的圖像。這一突破利用光子糾纏創(chuàng)造了一種校正顯微鏡圖像失真的新方法,可以改善組織樣本的經(jīng)典
    的頭像 發(fā)表于 04-23 06:33 ?194次閱讀
    使用<b class='flag-5'>光子</b>糾纏的自適應(yīng)光學<b class='flag-5'>成像</b>

    淺談超分辨光學成像

    分辨光學定義及應(yīng)用 分辨光學成像特指分辨率打破了光學顯微鏡分辨率極限(200nm)的顯微鏡,技術(shù)原理主要有受激發(fā)射損耗顯微鏡
    的頭像 發(fā)表于 03-15 06:35 ?467次閱讀
    淺談超分辨光學<b class='flag-5'>成像</b>

    顯微測量|共聚焦顯微鏡大傾角超清納米三維顯微成像

    用于材料科學領(lǐng)域的共聚焦顯微鏡,基于光學共軛共焦原理,其超高的空間分辨率和三維成像能力,提供了全新的視角和解決方案。工作原理共聚焦顯微鏡通過在樣品的焦點處聚焦激光束,在樣品表面進行快速
    發(fā)表于 02-20 09:07 ?1次下載

    顯微測量|共聚焦顯微鏡大傾角超清納米三維顯微成像

    共聚焦顯微鏡在材料學領(lǐng)域應(yīng)用廣泛,通過超高分辨率的三維顯微成像測量,可清晰觀察材料的表面形貌、表層結(jié)構(gòu)和納米尺度的缺陷,有助于理解材料的微觀特性和材料工程設(shè)計。
    的頭像 發(fā)表于 02-18 10:53 ?469次閱讀
    <b class='flag-5'>顯微</b>測量|共聚焦<b class='flag-5'>顯微鏡</b>大傾角超清納米三維<b class='flag-5'>顯微</b><b class='flag-5'>成像</b>

    顯微鏡的結(jié)構(gòu)和使用方法 顯微鏡分為哪三個部分

    顯微鏡是一種用于放大觀察微小物體的光學儀器。它通過對物體的光線進行放大和調(diào)節(jié),使我們能夠看到肉眼無法觀察到的微小細節(jié)。顯微鏡廣泛應(yīng)用于生物學、醫(yī)學、工程和材料科學等領(lǐng)域。為了更好地理解
    的頭像 發(fā)表于 01-25 14:19 ?2340次閱讀

    中圖共聚焦顯微鏡大傾角超清納米測量應(yīng)用場景舉例

    共聚焦顯微鏡可以在非常小的區(qū)域內(nèi)進行高分辨率成像,用途廣泛。特別在材料科學研究中,適合用于觀察材料的表面形貌結(jié)構(gòu)。中圖共聚焦顯微鏡以針孔共聚焦技術(shù)
    的頭像 發(fā)表于 12-26 11:48 ?458次閱讀
    中圖共聚焦<b class='flag-5'>顯微鏡</b>大傾角超清納米測量應(yīng)用場景舉例

    用于體內(nèi)實時動態(tài)多重成像的NIR-II窗口中的熒光放大納米晶體

    生物相互作用調(diào)節(jié)的病理、生理過程至關(guān)重要,如細胞介導的免疫反應(yīng)、心血管疾病相關(guān)的血液動力學和神經(jīng)元電路的潛在波動等。然而迄今為止,這些研究的實現(xiàn)主要依賴于光子熒光顯微鏡和可見熒光探針
    的頭像 發(fā)表于 12-21 06:34 ?366次閱讀
    <b class='flag-5'>用于</b><b class='flag-5'>體內(nèi)</b>實時動態(tài)多重<b class='flag-5'>成像</b>的NIR-II窗口中的熒光放大納米晶體

    共聚焦顯微鏡應(yīng)用特點

    共聚焦顯微鏡具有高分辨率和高靈敏度的特點,適用于多種不同樣品的成像和分析,能夠產(chǎn)生結(jié)果和圖像清晰,易于分析。這些特性使共聚焦顯微鏡成為現(xiàn)代科
    發(fā)表于 11-21 09:21 ?0次下載