0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

EMI 抑制技術(shù)的補(bǔ)充降噪方法

電子設(shè)計 ? 來源:電子設(shè)計 ? 作者:電子設(shè)計 ? 2022-01-19 17:03 ? 次閱讀

削弱電磁干擾 (EMI) 是所有電子系統(tǒng)中存在的問題。許多規(guī)范將電磁兼容性 (EMC) 與適應(yīng)規(guī)定屏蔽下干擾功率譜級的能力相關(guān)聯(lián),恰恰證明了這一點(diǎn) [1]。尤其是高頻開關(guān) DC/DC 轉(zhuǎn)換器,開關(guān)換向過程中存在的高轉(zhuǎn)換率電壓和電流可能在穩(wěn)壓器自身(EMI 源)以及附近的敏感電路(受 EMI 干擾的設(shè)備)中產(chǎn)生嚴(yán)重的傳導(dǎo)和輻射干擾。本系列文章 [1-8] 的第 5 部分和第 6 部分回顧了多種適用于非隔離穩(wěn)壓器設(shè)計的 EMI 抑制技術(shù)。第 7 部分和第 8 部分回顧了隔離設(shè)計中的共模 (CM) 噪聲及其抑制技術(shù)。

一般而言,遵守電磁標(biāo)準(zhǔn)對于開關(guān)電源愈發(fā)重要,這不僅局限于總光譜能量過大,更多的原因是能量集中在基本開關(guān)頻率及其諧波的特定窄帶中。為此,第 9 部分提出通過擴(kuò)頻調(diào)頻 (SSFM) 技術(shù)將頻譜能量分配到頻譜中,使基波和諧波噪聲峰值幅值變得平整。圖 1 所示的擴(kuò)頻效應(yīng)可作為本系列文章前幾部分中介紹的 EMI 抑制技術(shù)的補(bǔ)充降噪方法。

擴(kuò)頻調(diào)制

本系列文章第 5 部分和第 6 部分中探討的 EMI 抑制技術(shù)重點(diǎn)關(guān)注減小天線因子,實(shí)現(xiàn)方式為謹(jǐn)慎使用高轉(zhuǎn)換率電流 (di/dt) 回路布局以及采用適當(dāng)?shù)木彌_電路和柵極驅(qū)動電路設(shè)計來避免劇烈的瞬態(tài)電壓 (dv/dt)。這些方法通過降低總功率來調(diào)整傳導(dǎo)噪聲和/或輻射噪聲功率頻譜的形狀,主要對高頻有效,對于低頻的作用效果可能較為有限。

相反,1992 年首次針對 DC/DC 轉(zhuǎn)換器提出的擴(kuò)頻調(diào)制(也稱為抖動)[9] 希望在不影響總噪聲功率的前提下針對傳導(dǎo)和輻射干擾功率譜的形狀進(jìn)行調(diào)整。通過在時域中對基準(zhǔn)時鐘信號進(jìn)行頻率調(diào)制 (FM),會根據(jù)調(diào)制信號在頻域中對基波和諧波分量進(jìn)行掃頻 [9-14]。如圖 1 所示,每個諧波均轉(zhuǎn)化為若干個幅值較小的邊帶諧波。噪聲頻譜從大頻譜峰值集中在開關(guān)頻率及其諧波處的一系列頻譜變?yōu)楦悠骄彙⒎逯蹈〔⑶腋舆B續(xù)的頻譜。

從實(shí)際 EMC 的角度來看,當(dāng)窄帶 EMI 源的信號頻率與受 EMI 干擾的敏感頻率范圍相匹配時,可在給定時間窗口內(nèi)傳輸大量功率,受 EMI 干擾的設(shè)備受到干擾或發(fā)生故障的概率隨之增大。如果將 EMI 源信號擴(kuò)展到大于受 EMI 干擾設(shè)備的敏感帶寬,耦合到受干擾設(shè)備的噪聲功率隨之減小,從整體改善 EMI 性能和可靠性。

周期性調(diào)制函數(shù)

周期性擴(kuò)頻調(diào)制技術(shù)的主要作用是將各諧波擴(kuò)展到預(yù)設(shè)頻段,降低峰值幅值并減弱 EMI 水平。在這一背景下,公式 1 提供了通過擴(kuò)頻調(diào)制對正弦載波進(jìn)行調(diào)頻的一般分析表達(dá)式:

pYYBAGGKUuaAcHg0AAB0iD3n2Sg559.png

其中 A 是未調(diào)制信號的幅值,fc 為載波頻率,Δf 是頻率偏差。

歸一化周期調(diào)試函數(shù)為 ξ(t),反映了擴(kuò)頻的頻率變化。表 1 列出了正弦波、三角波和指數(shù)(也稱為三次方或“好時之吻”)調(diào)制曲線 [10] 的數(shù)學(xué)表達(dá)式。其中,kT 是三角波曲線的對稱指數(shù),取值范圍為 0 到 1,p 用于指定指數(shù)曲線的凹度系數(shù)。如果 kT 為 0.5,則三角波曲線具有對稱的三角形圖案。

pYYBAGGKUuiAP8lQAAN4TXhaYYs283.png

表 1:正弦波、三角波和指數(shù)調(diào)制曲線,其中 fm 和 Tm 分別為調(diào)制信號頻率和周期

圖 2 所示為采用 10kHz 調(diào)制頻率的正弦波、三角波和指數(shù)調(diào)制信號。圖中還可以看出,通過調(diào)制 100kHz 正弦載波信號得出的相應(yīng)擴(kuò)頻結(jié)果與公式 1 一致。每個圖象的頂部均指出明顯的瞬時載波工作頻率。

其它相關(guān)項分別為公式 2 和 3 得出的調(diào)制系數(shù)與調(diào)制比:

pYYBAGGKUuuAIHW2AABlVLnMk8s263.png

s(t) 的總功率等于 A2 / 2。根據(jù)卡森帶寬規(guī)則,總功率使用擴(kuò)頻技術(shù)分配,即擴(kuò)頻后的能量有 98% 包含在公式 4 中給出的帶寬 B 中(請參見圖 1):

pYYBAGGKUu2AVZXPAABH6Wd7jNU364.png

對于更為復(fù)雜的波形,比如開關(guān)節(jié)點(diǎn)電壓波形或 DC/DC 轉(zhuǎn)換器的輸入電流波形,更改瞬時頻率相當(dāng)于對傅里葉級數(shù)展開的每個構(gòu)成諧波應(yīng)用公式 1。唯一的區(qū)別在于會將第 n 次諧波在 n 倍卡森帶寬(由公式 5 得出)的帶寬范圍內(nèi)進(jìn)行擴(kuò)頻。

s(t) 頻譜的實(shí)際形狀由 Df 和 ξ(t) 決定。如果 ξ(t) 是周期為 Tm 的周期函數(shù),則 s(t) 的頻譜呈離散狀態(tài),這意味著可將信號分解為一系列頻率為 fc ± k/Tm 的正弦音調(diào),每個信號的幅值為 Ak??赏ㄟ^貝塞爾函數(shù)計算正弦調(diào)制的 Ak [9,10],而三角波調(diào)制的頻譜形狀已通過 Matlab 仿真進(jìn)行評估 [11]。

真正連續(xù)的功率頻譜只能通過非周期調(diào)制函數(shù)獲得(如使用混沌序列發(fā)生器或隨機(jī)序列發(fā)生器獲得),并通過功率頻譜密度進(jìn)行描述。與周期擴(kuò)頻技術(shù)相反,非周期調(diào)制測得的頻譜形狀與測量儀器的分辨率帶寬 (RBW) 設(shè)置無關(guān) [15,16]。下一節(jié)將探討 RBW 對于 EMI 測量的影響。

雖然正弦擴(kuò)頻技術(shù)更易于分析和實(shí)現(xiàn),但無法獲得最佳頻譜形狀并且諧波衰減未達(dá)到最大程度。如圖 3 所示,調(diào)制波形頻譜中的能量趨向于集中在調(diào)制波形中時間導(dǎo)數(shù)較小、靠近正弦波形波峰和波谷的各點(diǎn)對應(yīng)的頻率。另一方面,指數(shù)調(diào)制函數(shù)具有最平坦的頻譜,可針對靠近卡森帶寬兩端出現(xiàn)的二階效應(yīng)而產(chǎn)生的峰值進(jìn)行補(bǔ)償,進(jìn)一步減小 EMI。然而,指數(shù)波形在實(shí)踐中難以實(shí)現(xiàn),通常需要復(fù)雜的失真電路或查詢表。

線性三角形調(diào)制代表圖 3 所示的調(diào)制曲線之間已達(dá)到良好的折中,很容易在模擬和數(shù)字域中實(shí)現(xiàn)。通過選擇經(jīng)過優(yōu)化并且正確定義的三角波驅(qū)動信號頻率,最大限度地降低測得的 EMI 頻譜的峰值,可以為汽車等大批量、成本優(yōu)化型應(yīng)用提供穩(wěn)健的設(shè)計。

通過擴(kuò)頻優(yōu)化EMI抑制

國際規(guī)定要求使用 EMI 接收器進(jìn)行測量。EMI 接收器的本質(zhì)是額外配備一些輸入濾波器的模擬頻譜分析儀。鑒于測量 EMI 的超外差頻譜分析儀的復(fù)雜性 [16](特別是解調(diào)包絡(luò)檢波器和峰值/準(zhǔn)峰值/平均值檢波器的非線性),[11] 中的研究人員使用 EMI 接收器的 Matlab 模型,通過基于三角波調(diào)制的擴(kuò)頻技術(shù)計算降低的 EMI,從而得出三角波擴(kuò)頻的優(yōu)化曲線。舉例來說,圖 4 提供的噪聲級下降曲線基于多個頻率偏差值 Df,均為 EMI 接收器 RBW 設(shè)置的倍數(shù)。請注意,如果 m 超出某一特定值,EMI 抑制性能隨之下降。

選擇調(diào)制擴(kuò)頻參數(shù) Df 和 fm 時,需要在兩方面進(jìn)行權(quán)衡。首先,Df 應(yīng)足夠大,減小 EMI 測量值并降低易受 EMI 影響的設(shè)備所受的干擾。例如,為了避免在 AM 無線頻段內(nèi)產(chǎn)生干擾,汽車 DC/DC 穩(wěn)壓器通常使用外部電阻將自由運(yùn)行的開關(guān)頻率設(shè)置為 2.1 MHz(容差為 5%-10%)。為了在 1.6 MHz 的最大 AM 頻段中以足夠的裕度運(yùn)行,合理的方法是在 100kHz 至 150kHz 的范圍內(nèi)使用 Df 進(jìn)行中心擴(kuò)頻調(diào)制,可避免對穩(wěn)壓器輸出電壓紋波幅值和效率性能造成過大干擾。

確定 Df 后,優(yōu)化 EMI 性能的附加自由度取決于所選調(diào)制頻率。根據(jù)圖 4,調(diào)制系數(shù) m 應(yīng)具備一個適宜的中間值,大到可提供 EMI 衰減,同時小到 RBW 帶通濾波器的時域效應(yīng)不適用。具體而言,如果 fm 過低,瞬時干擾信號頻率處于 RBW 濾波器響應(yīng)時間內(nèi)的時間間隔會增大。信號長時間以未調(diào)制狀態(tài)出現(xiàn)在測量窗口中,可以有效測量未調(diào)制信號的幅值。這種短期時域效應(yīng)同樣應(yīng)用于易受 EMI 干擾的電路及其敏感頻段。

因此,在規(guī)定頻率范圍內(nèi)使用指定 EMI 測量設(shè)置時,為了正確估計擴(kuò)頻技術(shù)的影響,務(wù)必考慮時域特性。例如,針對汽車應(yīng)用的國際無線電干擾特別委員會 (CISPR) 25 等規(guī)定要求,在 150kHz 至 30MHz 以及 30MHz 至 1GHz 的頻段進(jìn)行測量時,RBW 設(shè)置應(yīng)分別為 9kHz 和 120kHz。按照經(jīng)驗法則,如果將 fm 設(shè)置為與要求的 RBW 相近,則 EMI 接收器能夠獨(dú)立測量各個邊帶諧波,使測量結(jié)果與預(yù)期計算值相符。

實(shí)踐案例研究

圖 5 為使用兩個雙相可堆疊控制器的四相同步降壓穩(wěn)壓器電路 [17] 示意圖。控制器采用多種功能降低 EMI,包括恒定開關(guān)頻率操作、外部時鐘同步以及通過分離各電源開關(guān)的柵極驅(qū)動輸出實(shí)現(xiàn)開關(guān)節(jié)點(diǎn)整形(轉(zhuǎn)換率控制)。

控制器工作時使用的電阻可調(diào)節(jié)開關(guān)頻率高達(dá) 2.2MHz,進(jìn)行外部同步后可達(dá) 2.5MHz。SSFM 可通過以下三種方法進(jìn)行配置:

使用控制器的外部同步 (SYNCIN) 輸入,施加采用所需調(diào)制技術(shù)的頻率信號。

通過電阻將調(diào)制信號與 RT 引腳耦合。

使用 DITH 引腳上的電容設(shè)置調(diào)制頻率,然后使用內(nèi)置的 ±5% 三角波擴(kuò)頻(抖動)函數(shù)。

poYBAGGKUvKARR9UAAMyHEZVuzA848.png

圖 5:采用三角波擴(kuò)頻調(diào)制的四相同步降壓穩(wěn)壓器示意圖

給定的標(biāo)稱開關(guān)頻率為 2.1MHz,使用集成擴(kuò)頻功能時的頻率偏差 Δf 為 5% 或 105 kHz。EMI 接收器使用頻率為 9kHz 的 RBW 濾波器,在 150kHz 至 30MHz 的范圍內(nèi)進(jìn)行測量。頻譜分析儀中的 EMI 濾波器帶寬通常設(shè)定為 -6dB、具有四極并且波形接近高斯形狀 [16],因此應(yīng)用校正因數(shù)后,9kHz RBW 濾波器的 -3dB 有效帶寬認(rèn)定為約 6kHz?;谂c圖 4 相似的優(yōu)化曲線,使用公式 5 計算歸一化分辨率,可得出優(yōu)化的調(diào)制系數(shù)約為 10:

pYYBAGGKUvSAe4bZAABu01dP3uk618.png

此后,通過公式 6 推導(dǎo)出所需的調(diào)制頻率:

pYYBAGGKUvWAV8fxAABbBeffjNY659.png

圖 6 顯示的是啟用和禁用擴(kuò)頻后的開關(guān)節(jié)點(diǎn)電壓波形(使用圖 5 中的穩(wěn)壓器測量)。圖 6b 中的波形范圍恒定不變,展示開關(guān)頻率的變化情況。

圖 7 所示為在 10 kHz 處設(shè)置三角波調(diào)制后,在 150kHz 至 30MHz 的范圍內(nèi)測得的圖 5 中穩(wěn)壓器的傳導(dǎo)輻射。使用 Rohde & Schwarz 的頻譜分析儀,所得檢測器掃描結(jié)果的峰值和平均值分別以黃色和藍(lán)色表示。測量結(jié)果符合 CISPR 25 5 類 的要求。紅色的限值線對應(yīng) CISPR 25 5 類的峰值限值和平均限值(峰值限值通常比平均限值高出 20dB)。

總結(jié)

對于較為擁擠的電磁波譜,開關(guān)電源是導(dǎo)致電磁環(huán)境惡化的關(guān)鍵因素。擴(kuò)頻技術(shù)改變傳導(dǎo)和輻射干擾功率譜的形狀,降低峰值輻射水平,從而符合國際 EMC 規(guī)定的要求。選用經(jīng)過優(yōu)化的調(diào)制頻率可實(shí)現(xiàn)一種系統(tǒng)級解決方案,其封裝和體積更小,同時降低固有成本并提升功率密度。

上一篇:EMI 的工程師指南第 8 部分—隔離式 DC/DC 電路的共模噪聲抑制方法

審核編輯:何安

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 電源管理
    +關(guān)注

    關(guān)注

    115

    文章

    6124

    瀏覽量

    143963
收藏 人收藏

    評論

    相關(guān)推薦

    EMC與EMI濾波器:電磁兼容性與干擾抑制的守護(hù)者

    深圳比創(chuàng)達(dá)|EMC與EMI濾波器:電磁兼容性與干擾抑制的守護(hù)者
    的頭像 發(fā)表于 06-12 10:23 ?486次閱讀
    EMC與<b class='flag-5'>EMI</b>濾波器:電磁兼容性與干擾<b class='flag-5'>抑制</b>的守護(hù)者

    EMC與EMI濾波器:兼容與干擾“降噪”的電子設(shè)備

    深圳比創(chuàng)達(dá)電子|EMC與EMI濾波器:兼容與干擾“降噪”的電子設(shè)備
    的頭像 發(fā)表于 05-22 10:42 ?413次閱讀
    EMC與<b class='flag-5'>EMI</b>濾波器:兼容與干擾“<b class='flag-5'>降噪</b>”的電子設(shè)備

    EMC濾波器與EMI抑制:雙管齊下,確保設(shè)備穩(wěn)定運(yùn)行

    深圳比創(chuàng)達(dá)|EMC濾波器與EMI抑制:雙管齊下,確保設(shè)備穩(wěn)定運(yùn)行
    的頭像 發(fā)表于 04-12 10:00 ?382次閱讀
    EMC濾波器與<b class='flag-5'>EMI</b><b class='flag-5'>抑制</b>:雙管齊下,確保設(shè)備穩(wěn)定運(yùn)行

    采用EMI降噪技術(shù)的TPS92662A-Q1高亮度LED矩陣管理器數(shù)據(jù)表

    電子發(fā)燒友網(wǎng)站提供《采用EMI降噪技術(shù)的TPS92662A-Q1高亮度LED矩陣管理器數(shù)據(jù)表.pdf》資料免費(fèi)下載
    發(fā)表于 03-21 15:20 ?4次下載
    采用<b class='flag-5'>EMI</b><b class='flag-5'>降噪</b><b class='flag-5'>技術(shù)</b>的TPS92662A-Q1高亮度LED矩陣管理器數(shù)據(jù)表

    降噪是什么原理 降噪方法分為哪幾種

    降噪是什么原理 降噪方法分為哪幾種? 降噪是指通過一系列技術(shù)手段減少或消除環(huán)境中存在的噪聲干擾,從而提高音頻、圖像、信號等的質(zhì)量或清晰度。
    的頭像 發(fā)表于 03-14 16:55 ?6434次閱讀

    藍(lán)牙降噪耳機(jī)的工作原理是什么?主動降噪和通話降噪技術(shù)有何區(qū)別?

    藍(lán)牙降噪耳機(jī)的工作原理是什么?主動降噪和通話降噪技術(shù)有何區(qū)別? 藍(lán)牙降噪耳機(jī)的工作原理是通過一系列技術(shù)
    的頭像 發(fā)表于 03-14 15:46 ?2668次閱讀

    總結(jié)其他的EMI噪聲抑制

    必須采取下述的基本對策。其次,變頻器用高載波頻率輸出斬波,所以成為噪聲的發(fā)生源。由于這種噪聲的發(fā)生使外圍設(shè)備誤動作時,應(yīng)實(shí)施抑制噪聲的對策(EMI 對策)。此對策根據(jù)噪聲(EMI)傳播路徑而略有不同
    發(fā)表于 03-06 15:47

    噪聲抑制的原理 用EMI濾波器抑制噪聲的方法

    噪聲抑制的原理主要基于聲波的相消性干涉,通過產(chǎn)生與原始噪聲波相位相反的聲波來達(dá)到降低噪聲水平的效果。
    的頭像 發(fā)表于 02-22 18:25 ?1871次閱讀
    噪聲<b class='flag-5'>抑制</b>的原理 用<b class='flag-5'>EMI</b>濾波器<b class='flag-5'>抑制</b>噪聲的<b class='flag-5'>方法</b>

    如何使用EMI濾波器來抑制噪聲

    電磁干擾(EMI)濾波器的抑制噪聲性能是根據(jù)MIL STD-220規(guī)定的插入損耗測量方法進(jìn)行測量的。通過在負(fù)載上插入濾波器和不插入濾波器時測量電壓,并使用上述表達(dá)式確定插入損耗。插入損耗的單位用dB(分貝)表示。例如,當(dāng)插入損耗
    發(fā)表于 12-25 10:14 ?1552次閱讀
    如何使用<b class='flag-5'>EMI</b>濾波器來<b class='flag-5'>抑制</b>噪聲

    抑制開關(guān)穩(wěn)壓器EMI:不用濾波電路,還有什么好方法?

    抑制開關(guān)穩(wěn)壓器EMI:不用濾波電路,還有什么好方法
    的頭像 發(fā)表于 12-13 16:13 ?488次閱讀
    <b class='flag-5'>抑制</b>開關(guān)穩(wěn)壓器<b class='flag-5'>EMI</b>:不用濾波電路,還有什么好<b class='flag-5'>方法</b>?

    降噪耳機(jī)是怎么降噪的?被動降噪和主動降噪的區(qū)別和原理

    他人進(jìn)行溝通,而無需受到外界噪音的干擾。降噪耳機(jī)的核心技術(shù)是通過一系列方法來抵消或減小外界噪音,以使用戶可以得到更純凈、清晰的聲音。 降噪耳機(jī)可分為被動式
    的頭像 發(fā)表于 12-11 11:43 ?2196次閱讀

    噪音抑制與主動降噪:有何不同之處?

    噪音抑制與主動降噪:有何不同之處?
    的頭像 發(fā)表于 11-30 17:29 ?591次閱讀
    噪音<b class='flag-5'>抑制</b>與主動<b class='flag-5'>降噪</b>:有何不同之處?

    如何抑制MEI電磁干擾傳導(dǎo)?如何選擇EMI濾波器?

    如何抑制MEI電磁干擾傳導(dǎo)?如何選擇EMI濾波器? 抑制電磁干擾(MEI)傳導(dǎo)是一項非常關(guān)鍵的任務(wù),特別是在電子設(shè)備密集的環(huán)境中。當(dāng)不同電子設(shè)備之間的電磁場相互干擾時,可能會導(dǎo)致電子設(shè)備的不正常工作
    的頭像 發(fā)表于 11-29 11:03 ?787次閱讀

    通過輻射發(fā)射測試:如何避免采用復(fù)雜的EMI抑制技術(shù)以實(shí)現(xiàn)緊湊、高性價比的隔離設(shè)計

    電子發(fā)燒友網(wǎng)站提供《通過輻射發(fā)射測試:如何避免采用復(fù)雜的EMI抑制技術(shù)以實(shí)現(xiàn)緊湊、高性價比的隔離設(shè)計.pdf》資料免費(fèi)下載
    發(fā)表于 11-22 10:32 ?0次下載
    通過輻射發(fā)射測試:如何避免采用復(fù)雜的<b class='flag-5'>EMI</b><b class='flag-5'>抑制</b><b class='flag-5'>技術(shù)</b>以實(shí)現(xiàn)緊湊、高性價比的隔離設(shè)計

    有哪些方法能夠降低開關(guān)電源EMI的影響呢?

    :在開關(guān)電源輸入和輸出之間添加濾波器是降低EMI影響的一種常見方法。輸入濾波器可用于抑制開關(guān)電源上游傳導(dǎo)的電磁干擾,而輸出濾波器則可用于抑制開關(guān)電源下游輻射的電磁干擾。濾波器的設(shè)計和選
    的頭像 發(fā)表于 11-07 10:35 ?757次閱讀