0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

用于鏈路級模擬的NVIDIA Sionna

星星科技指導(dǎo)員 ? 來源:NVIDIA ? 作者:Nathan Horrocks ? 2022-04-06 16:21 ? 次閱讀

即使 5G 無線網(wǎng)絡(luò)正在全球范圍內(nèi)安裝和使用,學(xué)術(shù)界和工業(yè)界的研究人員已經(jīng)開始為 6G 定義 愿景和關(guān)鍵技術(shù) 。雖然沒有人知道 6G 將是什么,但一個反復(fù)出現(xiàn)的愿景是, 6G 必須能夠以前所未有的規(guī)模創(chuàng)建數(shù)字雙胞胎和分布式機器學(xué)習(xí)( ML )應(yīng)用程序。 6G 研究需要新的工具。

支撐 6G 愿景的一些關(guān)鍵技術(shù)是被稱為太赫茲波段的高頻通信。在這個波段,更多的光譜是按數(shù)量級提供的。技術(shù)示例包括:

可重構(gòu)智能表面( RIS ),用于控制電磁波的反射方式并實現(xiàn)最佳覆蓋。

集成傳感和通信( ISAC )將 6G 網(wǎng)絡(luò)轉(zhuǎn)化為傳感器,為自動駕駛汽車、道路安全、機器人和物流提供了許多令人興奮的應(yīng)用。

機器學(xué)習(xí)有望在整個 6G 協(xié)議棧中發(fā)揮決定性作用,這可能會徹底改變我們設(shè)計和標(biāo)準(zhǔn)化通信系統(tǒng)的方式。

應(yīng)對這些革命性技術(shù)的研究挑戰(zhàn)需要新一代工具來實現(xiàn)突破,這些突破將定義 6G 時代的通信。原因如下:

許多 6G 技術(shù)需要模擬特定環(huán)境,例如工廠或小區(qū),物理位置、無線信道脈沖響應(yīng)和視覺輸入之間具有空間一致性的對應(yīng)關(guān)系。目前,這只能通過昂貴的測量活動或基于場景渲染和光線跟蹤組合的高效模擬來實現(xiàn)。

隨著機器學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)變得越來越重要,研究人員將從帶有本地 ML 集成和自動梯度計算的鏈接級模擬器中受益匪淺。

6G 仿真需要前所未有的建模精度和規(guī)模。 ML 增強算法的全部潛力只能通過基于物理的模擬來實現(xiàn),這些模擬以過去不可能的細(xì)節(jié)水平來解釋現(xiàn)實。

介紹 NVIDIA Sionna

為了滿足這些需求, NVIDIA 開發(fā)了 Sionna ,這是一個 GPU 加速的開源庫,用于鏈路級模擬。

Sionna 能夠快速原型化復(fù)雜的通信系統(tǒng)架構(gòu)。這是世界上第一個能夠在物理層使用神經(jīng)網(wǎng)絡(luò)的框架,并且不需要為數(shù)據(jù)生成、培訓(xùn)和性能評估使用單獨的工具鏈。

Sionna 實施了一系列經(jīng)過仔細(xì)測試的最先進(jìn)算法,可用于基準(zhǔn)測試和端到端性能評估。這可以讓你專注于你的研究,使它更具影響力和可復(fù)制性,同時你花更少的時間實現(xiàn)你專業(yè)領(lǐng)域之外的組件。

Sionna 是用 Python 寫成的,基于 TensorFlow 和 Keras 。所有組件都以 Keras 層的形式實現(xiàn),這使您可以通過與構(gòu)建神經(jīng)網(wǎng)絡(luò)相同的方式連接所需的層來構(gòu)建復(fù)雜的系統(tǒng)架構(gòu)。

除了少數(shù)例外,所有組件都是可微的,因此梯度可以在整個系統(tǒng)中反向傳播。這是系統(tǒng)優(yōu)化和機器學(xué)習(xí)的關(guān)鍵因素,尤其是神經(jīng)網(wǎng)絡(luò)的集成。

NVIDIA GPU acceleration 提供了幾個數(shù)量級的更快模擬,并可擴展到大型多 GPU 設(shè)置,從而實現(xiàn)此類系統(tǒng)的交互式探索。如果沒有 GPU 可用,那么 Sionna 甚至可以在 CPU 上運行,盡管速度較慢。

Sionna 提供了豐富的 documentation 和一系列教程,使其易于入門。

Sinna 的第一個版本具有以下主要功能:

5G LDPC 、 5G 極性碼和卷積碼、速率匹配、 CRC 、交織器、擾碼器

各種解碼器: BP 變體、 SC 、 SCL 、 SCL-CRC 、維特比

QAM 和定制調(diào)制方案

3GPP 38.901 信道模型( TDL 、 CDL 、 RMa 、 UMa 、 Umi )、瑞利、 AWGN

正交頻分復(fù)用

MIMO 信道估計、均衡和預(yù)編碼

Sionna 是根據(jù) Apache 2.0 許可證發(fā)布的,我們歡迎外部各方的貢獻(xiàn)。

你好,Sionna!

下面的代碼示例顯示了一個“你好,世界!”模擬使用 16QAM 調(diào)制在 AWGN 信道上傳輸一批 LDPC 碼字的示例。本例顯示了如何實例化 Sionna 層,并將其應(yīng)用于先前定義的張量。編碼風(fēng)格遵循 Keras 的 functional API 。您可以在 Google Collaboratory 上的 Jupyter notebook 中直接打開此示例。即使 5G 無線網(wǎng)絡(luò)正在全球范圍內(nèi)安裝和使用,學(xué)術(shù)界和工業(yè)界的研究人員已經(jīng)開始為 6G 定義 愿景和關(guān)鍵技術(shù) 。雖然沒有人知道 6G 將是什么,但一個反復(fù)出現(xiàn)的愿景是, 6G 必須能夠以前所未有的規(guī)模創(chuàng)建數(shù)字雙胞胎和分布式機器學(xué)習(xí)( ML )應(yīng)用程序。 6G 研究需要新的工具。

支撐 6G 愿景的一些關(guān)鍵技術(shù)是被稱為太赫茲波段的高頻通信。在這個波段,更多的光譜是按數(shù)量級提供的。技術(shù)示例包括:

可重構(gòu)智能表面( RIS ),用于控制電磁波的反射方式并實現(xiàn)最佳覆蓋。

集成傳感和通信( ISAC )將 6G 網(wǎng)絡(luò)轉(zhuǎn)化為傳感器,為自動駕駛汽車、道路安全、機器人和物流提供了許多令人興奮的應(yīng)用。

機器學(xué)習(xí)有望在整個 6G 協(xié)議棧中發(fā)揮決定性作用,這可能會徹底改變我們設(shè)計和標(biāo)準(zhǔn)化通信系統(tǒng)的方式。

應(yīng)對這些革命性技術(shù)的研究挑戰(zhàn)需要新一代工具來實現(xiàn)突破,這些突破將定義 6G 時代的通信。原因如下:

許多 6G 技術(shù)需要模擬特定環(huán)境,例如工廠或小區(qū),物理位置、無線信道脈沖響應(yīng)和視覺輸入之間具有空間一致性的對應(yīng)關(guān)系。目前,這只能通過昂貴的測量活動或基于場景渲染和光線跟蹤組合的高效模擬來實現(xiàn)。

隨著機器學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)變得越來越重要,研究人員將從帶有本地 ML 集成和自動梯度計算的鏈接級模擬器中受益匪淺。

6G 仿真需要前所未有的建模精度和規(guī)模。 ML 增強算法的全部潛力只能通過基于物理的模擬來實現(xiàn),這些模擬以過去不可能的細(xì)節(jié)水平來解釋現(xiàn)實。

介紹 NVIDIA Sionna

為了滿足這些需求, NVIDIA 開發(fā)了 Sionna ,這是一個 GPU 加速的開源庫,用于鏈路級模擬。

Sionna 能夠快速原型化復(fù)雜的通信系統(tǒng)架構(gòu)。這是世界上第一個能夠在物理層使用神經(jīng)網(wǎng)絡(luò)的框架,并且不需要為數(shù)據(jù)生成、培訓(xùn)和性能評估使用單獨的工具鏈。

Sionna 實施了一系列經(jīng)過仔細(xì)測試的最先進(jìn)算法,可用于基準(zhǔn)測試和端到端性能評估。這可以讓你專注于你的研究,使它更具影響力和可復(fù)制性,同時你花更少的時間實現(xiàn)你專業(yè)領(lǐng)域之外的組件。

Sionna 是用 Python 寫成的,基于 TensorFlow 和 Keras 。所有組件都以 Keras 層的形式實現(xiàn),這使您可以通過與構(gòu)建神經(jīng)網(wǎng)絡(luò)相同的方式連接所需的層來構(gòu)建復(fù)雜的系統(tǒng)架構(gòu)。

除了少數(shù)例外,所有組件都是可微的,因此梯度可以在整個系統(tǒng)中反向傳播。這是系統(tǒng)優(yōu)化和機器學(xué)習(xí)的關(guān)鍵因素,尤其是神經(jīng)網(wǎng)絡(luò)的集成。

NVIDIA GPU acceleration 提供了幾個數(shù)量級的更快模擬,并可擴展到大型多 GPU 設(shè)置,從而實現(xiàn)此類系統(tǒng)的交互式探索。如果沒有 GPU 可用,那么 Sionna 甚至可以在 CPU 上運行,盡管速度較慢。

Sionna 提供了豐富的 documentation 和一系列教程,使其易于入門。

Sinna 的第一個版本具有以下主要功能:

5G LDPC 、 5G 極性碼和卷積碼、速率匹配、 CRC 、交織器、擾碼器

各種解碼器: BP 變體、 SC 、 SCL 、 SCL-CRC 、維特比

QAM 和定制調(diào)制方案

3GPP 38.901 信道模型( TDL 、 CDL 、 RMa 、 UMa 、 Umi )、瑞利、 AWGN

正交頻分復(fù)用

MIMO 信道估計、均衡和預(yù)編碼

Sionna 是根據(jù) Apache 2.0 許可證發(fā)布的,我們歡迎外部各方的貢獻(xiàn)。

你好,Sionna!

下面的代碼示例顯示了一個“你好,世界!”模擬使用 16QAM 調(diào)制在 AWGN 信道上傳輸一批 LDPC 碼字的示例。本例顯示了如何實例化 Sionna 層,并將其應(yīng)用于先前定義的張量。編碼風(fēng)格遵循 Keras 的 functional API 。您可以在 Google Collaboratory 上的 Jupyter notebook 中直接打開此示例。

batch_size = 1024
n = 1000 # codeword length
k = 500 # information bits per codeword
m = 4 # bits per symbol
snr = 10 # signal-to-noise ratio c = Constellation("qam",m,trainable=True)
b = BinarySource()([batch_size, k])
u = LDPC5GEncoder (k,n)(b)
x = Mapper (constellation=c)(u)
y = AWGN()([x,1/snr])
11r = Demapper("app", constellation=c)([y,1/snr])
b_hat = LDPC5GDecoder(LDPC5GEncoder (k, n))(11r)

Sionna 的一個關(guān)鍵優(yōu)勢是,組件可以進(jìn)行訓(xùn)練或由神經(jīng)網(wǎng)絡(luò)代替。 NVIDIA 使Constellation可訓(xùn)練,并用NeuralDemapper取代Demapper,后者只是通過 Keras 定義的神經(jīng)網(wǎng)絡(luò)。

c = Constellation("qam",m,trainable=True)
b = BinarySource()([batch_size, k])
u = LDPC5GEncoder (k,n)(b)
x = Mapper (constellation=c)(u)
y = AWGN()([x,1/snr])
11r = NeuralDemapper()([y,1/snr])
b_hat = LDPC5GDecoder(LDPC5GEncoder (k, n))(11r)

在這種情況下,定義星座點的張量現(xiàn)在變成了一個可訓(xùn)練的 TensorFlow 變量,可以通過 TensorFlow 自動微分功能與NeuralDemapper的權(quán)重一起跟蹤。由于這些原因, SIONA 可以被視為一個可微鏈路級模擬器。

展望未來

很快, Sionna 將允許集成光線跟蹤來取代隨機通道模型,從而實現(xiàn)許多新的研究領(lǐng)域。超快射線追蹤是通信系統(tǒng)數(shù)字孿生的關(guān)鍵技術(shù)。例如,這使得建筑物的架構(gòu)和通信基礎(chǔ)設(shè)施的共同設(shè)計能夠?qū)崿F(xiàn)前所未有的吞吐量和可靠性。


圖 3 。從 Jupyter 筆記本電腦中訪問硬件加速光線跟蹤功能

Sionna 利用計算( NVIDIA CUDA 核)、 AI ( NVIDIA 張量核)和 NVIDIA GPU 的光線跟蹤核對 6G 系統(tǒng)進(jìn)行閃電般的模擬。

關(guān)于作者

Nathan Horrocks 是 NVIDIA Research 的內(nèi)容營銷經(jīng)理。他重點強調(diào)了 NVIDIA 實驗室在世界各地進(jìn)行的驚人研究。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    27

    文章

    4635

    瀏覽量

    128449
  • 無線網(wǎng)
    +關(guān)注

    關(guān)注

    0

    文章

    102

    瀏覽量

    21180
  • 5G
    5G
    +關(guān)注

    關(guān)注

    1352

    文章

    48262

    瀏覽量

    562519
收藏 人收藏

    評論

    相關(guān)推薦

    PCle培訓(xùn)概述

    電子發(fā)燒友網(wǎng)站提供《PCle培訓(xùn)概述.pdf》資料免費下載
    發(fā)表于 09-11 09:16 ?0次下載
    PCle<b class='flag-5'>鏈</b><b class='flag-5'>路</b>培訓(xùn)概述

    NVIDIA和Meta CEO探討AI與仿真模擬技術(shù)的潛力

    NVIDIA 和 Meta 的首席執(zhí)行官將在一次難得的公開活動中共同探討 AI 與仿真模擬技術(shù)的潛力。
    的頭像 發(fā)表于 09-09 09:14 ?379次閱讀

    一般是需要在信號輸入和輸出作阻抗匹配,請問有沒有必要像圖上那樣信號傳輸?shù)拿?b class='flag-5'>級都做阻抗匹配?

    一般是需要在信號輸入和輸出作阻抗匹配,請問有沒有必要像圖上那樣信號傳輸?shù)拿?b class='flag-5'>級都做阻抗匹配?
    發(fā)表于 09-05 07:10

    IR615如何實現(xiàn)VPN備份?

    網(wǎng)絡(luò)連通性,可以看到模擬故障后丟失三個數(shù)據(jù)包。 模擬故障恢復(fù),連接wan口網(wǎng)線,查看路由表??梢钥吹铰酚梢呀?jīng)恢復(fù)到wan口。 OpenServer端查看看,可以看到恢復(fù)丟失四個數(shù)據(jù)
    發(fā)表于 07-25 08:27

    IG網(wǎng)關(guān)產(chǎn)品實現(xiàn)備份的方法

    。 同時可以啟用ICMP偵測功能確保通訊信號的時效性。 三:WiFi模式設(shè)定為STA后重啟設(shè)備,設(shè)定并掃描需要連接的WiFi輸入密碼,應(yīng)用連接。以上連接均可以在IG設(shè)備主頁或IR設(shè)備網(wǎng)絡(luò)連接的頁面下
    發(fā)表于 07-24 08:25

    如何識別光纖問題?

    光纖網(wǎng)絡(luò)專為連續(xù)運行而設(shè)計。通常,光纖網(wǎng)絡(luò)以最佳效率運行。然而,網(wǎng)絡(luò)中有時會遇到光纖問題。由于光纖網(wǎng)絡(luò)的復(fù)雜性,這些光纖問題很難識別。然而,為了確保光纖網(wǎng)絡(luò)的最佳性能,識別和解
    的頭像 發(fā)表于 06-11 10:12 ?378次閱讀

    NVIDIA Omniverse USD Composer能用來做什么?如何獲取呢?

    NVIDIA Omniverse? USD Composer(以前稱為 Create)是 NVIDIA Omniverse? 中用于構(gòu)建虛擬世界的參考應(yīng)用程序,允許用戶進(jìn)行組裝、模擬
    的頭像 發(fā)表于 05-20 10:07 ?632次閱讀
    <b class='flag-5'>NVIDIA</b> Omniverse USD Composer能用來做什么?如何獲取呢?

    如何辨別光纖的好壞?

    辨別光纖的好壞,通常涉及一系列測試和檢查步驟。以下是一些主要的方法: 光學(xué)連通性測試:檢查光纖的光學(xué)連通性。當(dāng)輸出端測到的光功率與輸入端實際輸入的光功率的比值小于一定的數(shù)值時,
    的頭像 發(fā)表于 04-11 11:48 ?812次閱讀

    A9680采集低頻信號時 發(fā)生204B斷開的問題

    )采集到的波形十分完美,204B穩(wěn)定 2、當(dāng)輸入正弦波頻率降低到50K時,開始會有解碼錯誤 3、當(dāng)輸入正弦波頻率降到30K及以下時,204B就會斷開 測過AD9680的設(shè)備時鐘
    發(fā)表于 04-09 08:15

    永久、信道測試的區(qū)別

    永久測試和信道測試是網(wǎng)絡(luò)和通信領(lǐng)域中兩個不同的概念,它們通常用于確保網(wǎng)絡(luò)和通信系統(tǒng)的可靠性和性能。 永久測試(Permanent L
    的頭像 發(fā)表于 03-25 10:59 ?2052次閱讀

    無線控制協(xié)議和作用

    無線控制協(xié)議是一種用于在無線通信系統(tǒng)中控制數(shù)據(jù)傳輸和管理無線的協(xié)議。它定義了在無線路上
    的頭像 發(fā)表于 02-01 10:51 ?791次閱讀

    要搭一個傳輸,前后的ADC和DAC采樣率和位數(shù)是否要完全相等?

    請問,要搭一個傳輸中的ADC和DAC的參數(shù),比如:采樣率和分辨率一定要一樣嗎? 中頻模擬信號,先模數(shù)轉(zhuǎn)換數(shù)字化進(jìn)行傳輸,之后需要
    發(fā)表于 12-12 06:21

    狀態(tài)路由協(xié)議的基本概念和原理解析

    狀態(tài)路由選擇協(xié)議又被稱為最短路徑優(yōu)先協(xié)議,它基SPF(shortest path first )算法。他比距離矢量協(xié)議復(fù)雜的多。路由器的狀態(tài)的信息稱為
    的頭像 發(fā)表于 12-07 09:52 ?2456次閱讀
    <b class='flag-5'>鏈</b><b class='flag-5'>路</b>狀態(tài)路由協(xié)議的基本概念和原理解析

    ADSP sharp213/4xx問題求解

    做一個項目: 1、主要三個音頻輸入: ①、模擬,經(jīng)由ADC轉(zhuǎn)換在數(shù)安:ADC_FS, ADC_BCLK,ADC_DA_I; ②、SPDIF輸入; ③、四I2S輸入: 考慮到輸入源
    發(fā)表于 11-30 06:09

    什么是聚合?怎么配置聚合?聚合簡介

    以太網(wǎng)聚合Eth-Trunk簡稱聚合,它通過將多條以太網(wǎng)物理捆綁在一起成為一條邏輯
    的頭像 發(fā)表于 11-28 09:24 ?2980次閱讀
    什么是<b class='flag-5'>鏈</b><b class='flag-5'>路</b>聚合?怎么配置<b class='flag-5'>鏈</b><b class='flag-5'>路</b>聚合?<b class='flag-5'>鏈</b><b class='flag-5'>路</b>聚合簡介