0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

LTC2063可在范圍內(nèi)提供精密電流測量

科技綠洲 ? 來源:ADI ? 作者:ADI ? 2022-04-07 16:17 ? 次閱讀

精密微安級高邊電流測量需要一個(gè)小阻值檢測電阻和一個(gè)低失調(diào)電壓的放大器。LTC2063零漂移放大器的最大輸入失調(diào)電壓僅為5 μV,僅需消耗1.4 μA的電流,是構(gòu)建完整的超低功耗精密高邊電流檢測電路的理想選擇(如圖1所示)。

pYYBAGJOnVaATxTZAADxbRYEIuk852.png

圖1. 基于LTC2063零漂移放大器的精密高邊電流檢測電路。

該電路僅需2.3 μA至280 μA的電源電流即可檢測100 μA至250 mA寬動(dòng)態(tài)范圍電流。LTC2063非常低的失調(diào)電壓使該電路能夠與低至100mΩ的分流電阻配合工作,從而使得最大分流電壓限值僅為25 mV。這可以大幅減小分流電阻上的功率損耗,并大大提 高負(fù)載可用功率。LTC2063的軌到軌輸入允許該電路在非常小的負(fù)載電流下工作,其輸入共模幾乎正好處于電源軌上。LTC2063的集成EMI濾波器可在高噪聲條件下保護(hù)器件免受RF干擾。

對于給定的檢測電流,該電路的電壓輸出為:

pYYBAGJOnaiARFWxAABSKkOlYwg512.png

零點(diǎn)

電流檢測解決方案的一項(xiàng)關(guān)鍵指標(biāo)是零點(diǎn),或在沒有檢測電流時(shí)產(chǎn)生的輸出折合到輸入端的等效誤差電流。零點(diǎn)通常由放大器的輸入失調(diào)電壓除以RSENSE決定。LTC2063的低輸入失調(diào)電壓典型值為1 μV,最大值為5 μV,低輸入偏置和失調(diào)電流典型值為1 pA至3 pA,因此,折合到輸入端的零點(diǎn)誤差電流典型值僅為10 μA(1 μV/0.1 Ω),最大值為50 μA (5 μV/0.1 Ω)。這種低誤差使檢測電路能夠在低至其指定范圍內(nèi)的最小電流(100 μA)時(shí)仍然保持其線性度,不會(huì)因分辨率損耗而在低量程范圍內(nèi)產(chǎn)生一個(gè)固定的失調(diào) 值導(dǎo)致線性度變平(如圖2所示)。所得的輸入電流與輸出電壓關(guān)系曲線在整個(gè)電流檢測范圍內(nèi)都是線性的。

poYBAGJOnbaAK8MpAADYAaShLpA880.png

圖2. 低端無固定失調(diào)值,ISENSE可低至100 μA。

零點(diǎn)誤差的另一個(gè)來源是輸出PMOS在零柵極電壓時(shí)的漏極電流或IDSS, 即PMOS標(biāo)稱為關(guān)閉(|VGS| = 0)時(shí)存在于非零VDS上的寄生電流。具有高IDSS漏電流的MOSFET在沒有ISENSE時(shí)將產(chǎn)生一個(gè)非零正VOUT值。

本設(shè)計(jì)中使用的晶體管英飛凌的BSP322P,它在|VDS| = 100 V時(shí)的IDSS 上限值為1 μA。可對本應(yīng)用中BSP322P的典型IDSS 進(jìn)行一個(gè)合 理估計(jì),在室溫條件且VDS= –7.6 V時(shí),IIDSS僅為0.2 nA,因此僅產(chǎn)生1 μV的誤差輸出,或等效于測量0 A輸入電流時(shí)產(chǎn)生100 nA的輸入電流誤差。

架構(gòu)

LT1389-4.096 基準(zhǔn)電壓源以及由M2、R2和D1組成的自舉電路構(gòu)成超低功耗的隔離3 V電源軌(4.096 V + M2的VTH ,后者典型值為-1 V),LTC2063可防止達(dá)到5.5 V的絕對最大電源電壓值。盡管串聯(lián)電阻也能滿足建立偏置電流的需求,但使用晶體管M2可以提供更高的整體電源電壓,同時(shí)還可將電源范圍高邊的電流消耗限制在僅為280 μA。

精密

LTC2063的輸入失調(diào)電壓導(dǎo)致折合到輸入端的固定電流誤差為10 μA(典型值)。在250 mA滿量程輸入中,所產(chǎn)生的失調(diào)誤差僅為0.004%。在低端,100 μA中的10 μA代表10%的誤差。由于失調(diào)是恒定的,因此可以對其進(jìn)行校準(zhǔn)。圖3顯示,由LTC2063、不匹配的寄生熱電偶以及所有寄生串聯(lián)輸入電阻產(chǎn)生的總失調(diào)僅為2 μV。

poYBAGJOncSATMP2AAEnoz2qIw8916.png

圖3. 采用4.5 V最小電源時(shí)在整個(gè)ISENSE范圍內(nèi)VIN至VOUT 的轉(zhuǎn)換。200.7μV的輸出失調(diào)除以100.05 V/V電壓增益,表示RTI輸入偏置為2μV。

圖3所示的增益為100.05 V/V,它比構(gòu)建時(shí)由ROUT和RIN的實(shí)際值給定的預(yù)期增益(即4.978 kΩ/50.4 Ω = 98.77 V/V)大1.28 V/V。該誤 差可能是由LTC2063的輸入端與RSENSE之間500mΩ左右的寄生串聯(lián)電阻所導(dǎo)致。

該電路輸出不確定性的主要來源是噪聲,因此,使用并聯(lián)大電容進(jìn)行濾波對于降低噪聲帶寬從而降低總綜合噪聲至關(guān)重要。使用1.5 Hz輸出濾波器時(shí),LTC2063會(huì)使折合到輸入端的低頻噪 聲增加約2 μV p-p。在盡可能長的持續(xù)時(shí)間內(nèi)平均輸出,進(jìn)一步減少由于噪聲引起的誤差。

該電流檢測電路中的其他誤差源包括在LTC2063輸入端與RSENSE串聯(lián)的寄生板級電阻、增益設(shè)置電阻RIN和ROUT的電阻值容差、增益設(shè)置電阻的溫度系數(shù)不匹配以及由寄生熱電偶引起的運(yùn)算放大器輸入端的誤差電壓。可以通過使用開爾文連接檢測RSENSE4引腳檢測電阻以及使用與RIN和ROUT的關(guān)鍵增益設(shè)置路徑具有相似或更低溫度系數(shù)的0.1%電阻來大幅降低前三個(gè)誤差源。為了消除運(yùn)算放大器輸入端的寄生熱電偶,R1應(yīng)與RIN具有相同的金屬端子。還應(yīng)盡可能避免在輸入端的不對稱熱梯度。

以滿量程2.5 V輸出為基準(zhǔn),所有誤差源的總貢獻(xiàn)最多為1.4%(如圖4所示)。

poYBAGJOndCAaBXNAAEUQbfXLRI258.png

圖4. 誤差百分比在整個(gè)讀數(shù)范圍內(nèi)保持在1.4%以下。

電源電流

LT1389-4.096和LTC2063在最小VSUPPLY和ISENSE(4.5 V和100 μA)時(shí)所需的最小電源電流為2.3 μA,在最大VSUPPLY和ISENSE (90 V和 250 mA)時(shí)則可達(dá)280 μA(如圖5所示)。除了有源組件消耗的電流外,VSUPPLY還需要提供流經(jīng)M1的輸出電流IDRIVE,該電流與輸出電壓成比例,范圍從1.0 mV輸出時(shí)的200 nA (ISENSE為100 μA時(shí))到2.5 V輸出時(shí)的500 μA( ISENSE 為250 mA時(shí))。因此,除ISENSE外,總的電源電流范圍為2.5 μA至780μA。將 ROUT設(shè)置為5 kΩ以獲得合理的ADC驅(qū)動(dòng)值。

poYBAGJOndqADOskAADxU5hgGM0680.png

圖5. 電源電流隨電源電壓而增加,但不會(huì)超過280 μA。

輸入電壓范圍

在這種架構(gòu)中,最大電源取決于PMOS輸出端可以承受的最大|VDS|。BSP322P的額定電壓為100 V,因此90 V是一個(gè)合適的工作限值。

輸出范圍

此設(shè)計(jì)可以驅(qū)動(dòng)5 kΩ負(fù)載,因此適合作為眾多ADC的驅(qū)動(dòng)級。它的輸出電壓范圍為0 V至2.5 V。由于LTC2063具有軌到軌輸出,因此最大的柵極驅(qū)動(dòng)僅受限于LTC2063的裕量。在本設(shè)計(jì) 中,典型值為3 V,它由LT1389-4.096的4.096 V加上M2的VTH典型值–1 V設(shè)定。

因?yàn)樵撾娐返妮敵鰹殡娏?,所以電壓、接地或引線失調(diào)都不會(huì)影響精度。因此,可以在輸出PMOS M1和ROUT之間使用長引線,從而允許RSENSE位于待檢測電流附近,而ROUT位于ADC和其他信號(hào)鏈后續(xù)級附近。長引線的缺點(diǎn)是增加了EMI敏感度。ROUT兩端的100 nF C3可在有害EMI到達(dá)下一級前對其進(jìn)行分流。

速度限制

由于LTC2063的增益帶寬乘積為20 kHz,因此建議使用此電路來測量20 Hz或頻率更低的信號(hào)。22 μF的C2與負(fù)載并聯(lián),可將輸出噪聲濾波為1.5 Hz,以提高精度并保護(hù)后續(xù)電路免受突發(fā)電流浪涌影響。該濾波的代價(jià)是建立時(shí)間更長,尤其是在輸入電流范圍的最低端。

結(jié)論

LTC2063具有超低輸入失調(diào)電壓、低IOFFSET和低IBIAS以及軌到軌輸入,可在100 μA至250 mA全范圍內(nèi)提供精密電流測量。該電路的最大電源電流為2 μA,因此在大部分工作范圍內(nèi)都能以遠(yuǎn)低于280 μA的電源電流運(yùn)行。LTC2063的低電源電流以及低電源電壓要求使其能夠利用基準(zhǔn)電壓源供電并且綽綽有余。

LTC2063

低電源電流:最大 2μA(每個(gè)放大器)

失調(diào)電壓:5μV(最大值)

失調(diào)電壓漂移:0.02μV /°C(最大值)

輸入偏置電流:

3 pA(典型值)

30 pA(最大值), –40°C ~ 85°C

100 pA(最大值), –40°C ~ 125°C

集成 EMI 濾波器(1.8 GHz 時(shí)可抑制 114 dB)

關(guān)斷電流:最大 170 nA(每個(gè)放大器)

軌到軌輸入和輸出

工作電壓范圍:1.7 V ~ 5.25 V

AVOL:140 dB(典型值)

低電量上電,適用于占空比應(yīng)用

額定溫度范圍:

–40°C ~ 85°C

–40°C ~ 125°C

SC70、TSOT-23、MS8 和 DFN 封裝

審核編輯:彭菁
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 濾波器
    +關(guān)注

    關(guān)注

    159

    文章

    7657

    瀏覽量

    177180
  • 電流測量
    +關(guān)注

    關(guān)注

    0

    文章

    104

    瀏覽量

    15105
  • 電源電流
    +關(guān)注

    關(guān)注

    0

    文章

    37

    瀏覽量

    11028
收藏 人收藏

    評論

    相關(guān)推薦

    基于LTC2063零漂移放大器的精密高邊電流檢測電路

    該電路僅需2.3 μA至280 μA的電源電流即可檢測100 μA至250 mA寬動(dòng)態(tài)范圍電流。LTC2063非常低的失調(diào)電壓使該電路能夠與低至100mΩ的分流電阻配合工作,從而使得最
    的頭像 發(fā)表于 06-30 14:53 ?3583次閱讀

    基于精密超低功耗放大器的電源電壓的高端電流檢測方法

    的建立時(shí)間,特別是在輸入電流范圍的最低端?! 〗Y(jié)論  LTC2063的超低輸入失調(diào)電壓,低IOFFSET和IBIAS以及軌到軌輸入可在100μA至250mA的整個(gè)
    發(fā)表于 11-21 16:27

    介紹一款零漂移運(yùn)算放大器LTC2063

    LTC2063到底是什么?LTC2063有哪些性能?
    發(fā)表于 06-26 07:54

    基于精密超低功耗放大器的電源電壓的高端電流檢測方法

     微放大器電流精密高端測量需要一個(gè)小值檢測電阻和一個(gè)低失調(diào)電壓,超低功耗放大器。 提供280μA的電源電流,以在100μA至250mA的寬
    發(fā)表于 11-29 15:45 ?3586次閱讀
    基于<b class='flag-5'>精密</b>超低功耗放大器的電源電壓的高端<b class='flag-5'>電流</b>檢測方法

    介紹 LTC2063 的性能指標(biāo)

    除了卓越的輸入失調(diào)電壓和輸入失調(diào)電壓漂移性能之外,LTC2063 還擁有高開環(huán)增益、CMRR 和 PSRR 規(guī)格指標(biāo)。LTC2063 的軌至軌輸入級放大器簡化了高壓側(cè)和低壓側(cè)電流檢測等應(yīng)用。一個(gè)集成
    的頭像 發(fā)表于 06-28 00:11 ?4819次閱讀
    介紹 <b class='flag-5'>LTC2063</b> 的性能指標(biāo)

    LTC2063 2μA 電源電流、低 IB、零漂移運(yùn)算放大器

    電子發(fā)燒友網(wǎng)為你提供(adi)LTC2063相關(guān)數(shù)據(jù)表資料,例如:LTC2063的引腳圖、接線圖、封裝手冊、中文資料、英文資料,LTC2063真值表,
    發(fā)表于 02-15 18:26
    <b class='flag-5'>LTC2063</b> 2μA 電源<b class='flag-5'>電流</b>、低 IB、零漂移運(yùn)算放大器

    基于LTC2063零漂移放大器的精密高邊電流檢測電路

    圖1. 基于LTC2063零漂移放大器的精密高邊電流檢測電路。
    的頭像 發(fā)表于 06-23 09:09 ?3498次閱讀

    LTC2063 Demo Circuit - Low Power Thermocouple Sense Amplifier

    LTC2063 Demo Circuit - Low Power Thermocouple Sense Amplifier
    發(fā)表于 02-03 11:46 ?0次下載
    <b class='flag-5'>LTC2063</b> Demo Circuit - Low Power Thermocouple Sense Amplifier

    LTC2063 Demo Circuit - Low Power Irradiance Sense Amplifier

    LTC2063 Demo Circuit - Low Power Irradiance Sense Amplifier
    發(fā)表于 02-03 11:50 ?5次下載
    <b class='flag-5'>LTC2063</b> Demo Circuit - Low Power Irradiance Sense Amplifier

    LTC2063 Demo Circuit - μPower Precision Oxygen Sensor

    LTC2063 Demo Circuit - μPower Precision Oxygen Sensor
    發(fā)表于 02-05 15:39 ?15次下載
    <b class='flag-5'>LTC2063</b> Demo Circuit - μPower Precision Oxygen Sensor

    LTC2063演示電路-小功率電池電壓測量放大器

    LTC2063演示電路-小功率電池電壓測量放大器
    發(fā)表于 04-09 10:48 ?3次下載
    <b class='flag-5'>LTC2063</b>演示電路-小功率電池電壓<b class='flag-5'>測量</b>放大器

    LTC2063演示電路-低功耗4-20 mA電流環(huán)路檢測放大器

    LTC2063演示電路-低功耗4-20 mA電流環(huán)路檢測放大器
    發(fā)表于 04-09 10:50 ?5次下載
    <b class='flag-5'>LTC2063</b>演示電路-低功耗4-20 mA<b class='flag-5'>電流</b>環(huán)路檢測放大器

    LTC2063/LTC2064/LTC2065:2μA電源電流,低IB,零漂移運(yùn)算放大器數(shù)據(jù)表

    LTC2063/LTC2064/LTC2065:2μA電源電流,低IB,零漂移運(yùn)算放大器數(shù)據(jù)表
    發(fā)表于 05-16 13:59 ?10次下載
    <b class='flag-5'>LTC2063</b>/<b class='flag-5'>LTC</b>2064/<b class='flag-5'>LTC</b>2065:2μA電源<b class='flag-5'>電流</b>,低IB,零漂移運(yùn)算放大器數(shù)據(jù)表

    LTC2063演示電路-功率精密氧傳感器

    LTC2063演示電路-功率精密氧傳感器
    發(fā)表于 05-29 18:35 ?1次下載
    <b class='flag-5'>LTC2063</b>演示電路-功率<b class='flag-5'>精密</b>氧傳感器

    基于LTC2063零漂移放大器的精密高邊電流檢測電路

    精密微安級高邊電流測量需要一個(gè)小阻值檢測電阻和一個(gè)低失調(diào)電壓的放大器。LTC2063零漂移放大器的最大輸入失調(diào)電壓僅為5 μV,僅需消耗1.4 μA的
    的頭像 發(fā)表于 04-09 14:02 ?2337次閱讀