0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

豐田THS-II混合動力核心控制策略介紹(一)

jf_IvoARX3P ? 來源:EDC電驅未來 ? 2023-01-30 14:18 ? 次閱讀

豐田THS-II(TOYOTA HYBRID SYSTEM-II)屬功率分流型混合動力架構(圖1),其關鍵部件是動力分配行星齒輪(Power Split Device簡稱PSD),在行星齒輪排中已知兩根軸的轉速就能確定第三根軸的轉速(基于行星齒輪排的傳動特性),類似的也可以由此確定三根軸之間的轉矩關系(行星齒輪排杠桿扭矩受力平衡特性)。因此,只有當MG1吸收機械功率并且將其轉換為電功率時,才可實現(xiàn)沿機械路徑的功率傳輸,通過這種方式會持續(xù)產(chǎn)生電功率,因不可能將其全部存儲到HV蓄電池中,并且出于效率原因的考慮,這樣做也沒有意義。通過使用直接位于輸出軸上的電動機/發(fā)電機MG2可形成一條電力路徑,可將產(chǎn)生的電功率再次直接轉換為機械驅動功率,根據(jù)由輪速和期望車輪驅動扭矩構成的行駛需求產(chǎn)生一個發(fā)動機優(yōu)選轉速,并通過電動機/發(fā)電機MG1的轉速調節(jié)使發(fā)動機達到該轉速。車輪所需的驅動扭矩由發(fā)動機產(chǎn)生,其中一部分通過機械路徑,另一部分通過電力路徑傳輸至車輪。

7c99f14c-a062-11ed-bfe3-dac502259ad0.jpg

圖1 THS-II混合動力架構

同其他混合動力汽車一樣,HV蓄電池通常被用于對驅動系統(tǒng)運行狀態(tài)產(chǎn)生有針對性的影響,借助于HV蓄電池的幫助,可使發(fā)動機在期望的車輪扭矩下不工作在過高或過低的負荷狀態(tài)下,利用存儲在HV蓄電池里的能量可實現(xiàn)關閉發(fā)動機,僅由電動機/發(fā)電機MG2單獨用于驅動車輛,以避免發(fā)動機工作于極差的工作區(qū)域。THS-II通過2條路徑使串聯(lián)和并聯(lián)混合驅動的基本原理得到組合,因此功率分流也被稱為串并聯(lián)拓撲結構。該方案的一大優(yōu)點在于無級可調的傳動比(E-CVT)和與此相關的發(fā)動機最佳工作點的自由選擇。此外,傳動系統(tǒng)可以在沒有傳統(tǒng)變速器,特別是沒有換擋與離合元件的情況下實現(xiàn)無級變速,且變速時沒有牽引力中斷,從而保證了較高的行駛舒適性,此外還可以省去某些機械部件。早在94年,豐田公司就已對該架構申請了產(chǎn)權專利,當前該混合動力架構搭載于國內的一豐、廣豐部分混合動力車型,諸如:卡羅拉、雷凌、亞洲龍、凱美瑞、RAV4,以及Lexus的全系混合動力車型,諸如:CT200h、UX260h、ES300h、RX450h、LS500h等。

THS-II的運行主要由運行控制策略決定,根據(jù)降低排放和節(jié)約燃料的優(yōu)化目標,運行控制策略隨時確定所需的總驅動扭矩和分配給發(fā)動機和電機的驅動扭矩,并使發(fā)動機盡可能工作于最佳的工作點,此外,運行控制策略還要控制電能的產(chǎn)生,以給HV蓄電池充電。其所帶來的高效率除與其功率分流型的串并聯(lián)拓撲結構有關外,主要還取決于系統(tǒng)上層的混合動力控制策略,以Lexus CT200h車型為例,圖2為HV系統(tǒng)控制、圖3為HV輸出計算,分別給出了動力系統(tǒng)各部件及控制系統(tǒng)網(wǎng)絡連接和HV CPU內部運行控制策略的運算邏輯示意。

7ca749dc-a062-11ed-bfe3-dac502259ad0.jpg

圖2 HV系統(tǒng)控制

7cb40bea-a062-11ed-bfe3-dac502259ad0.jpg

圖3 HV輸出計算

系統(tǒng)中各子系統(tǒng)通過自身的控制實現(xiàn)各自的控制功能,如發(fā)動機控制、啟停控制、驅動力控制、再生制動控制、帶轉換器逆變器控制、電動機/發(fā)電機控制、DC/DC轉換器控制、HV蓄電池充電控制等,而處于核心的動力管理控制策略(HV CPU)協(xié)調控制整個動力系統(tǒng)。下面我們將以Lexus CT200h車型為例對各個子系統(tǒng)的工作原理和控制策略一一進行深入研習。

一、驅動力控制系統(tǒng)

如圖3所示,驅動力控制的輸入信號有加速踏板開度、車速、換擋桿位置、HV蓄電池的充電狀態(tài)(SOC)等控制輸出信號包括發(fā)動機的要求動力、發(fā)電機扭矩以及電動機扭矩等。首先根據(jù)加速踏板開度以及車速求得駕駛員請求的驅動扭矩(圖4),根據(jù)該扭矩和解析器傳感器所測得的MG2轉速(即輸出軸轉速)并結合系統(tǒng)的損失功率求得駕駛員請求輸出功率(如式1)。所需的HV蓄電池充電功率結合上述計算所得的駕駛員請求輸出功率的總和即可確定所需的發(fā)動機輸出功率(如式2)。

7cbf08d8-a062-11ed-bfe3-dac502259ad0.jpg

圖4 無級變速驅動力及目標驅動功率MAP圖

式1:駕駛員請求輸出功率=駕駛員請求扭矩×軸轉速(MG2 轉速)-系統(tǒng)損耗
式2:所需發(fā)動機輸出功率=駕駛員請求輸出功率+所需HV 蓄電池充電功率

接下來要計算出為產(chǎn)生這一所需發(fā)動機輸出功率而對應的最佳效率時的發(fā)動機扭矩(節(jié)氣門開度)和發(fā)動機轉速,并將其作為發(fā)動機的目標扭矩和目標轉速。這里需要引入發(fā)動機萬有特性的知識概述。即當一款發(fā)動機在被研發(fā)的過程中,技術人員會對該款發(fā)動機進行臺架試驗,通過對發(fā)動機全域的速度特性和負荷特性的科學標定進而能夠分別繪制出二者各工況下的特性曲線,將兩者的特性曲線進行融合,最終繪制出該款發(fā)動機的萬有特性(又稱全特性)圖,它可以表示發(fā)動機在整個工作范圍內主要參數(shù)的變化關系,還可以確定發(fā)動機最經(jīng)濟高效的工作區(qū)域。在發(fā)動機萬有特性圖中,利用發(fā)動機臺架試驗數(shù)據(jù),綜合最佳發(fā)動機動力性、燃油經(jīng)濟性和排放性,標定出發(fā)動機各功率特性曲線中的最佳工作點,將這些工作點連接起來,由此繪制出發(fā)動機最佳動力性能工作線。也就是說,任一發(fā)動機輸出功率曲線都有與之對應的唯一的發(fā)動機扭矩(節(jié)氣門開度)和發(fā)動機轉速的最佳工作點(圖5),再配合上THS-II的ECV-T混合動力變速器實現(xiàn)無級傳動,確保發(fā)動機要么不工作,要工作就在最經(jīng)濟高效的工作線上工作,由此可見,無論是整車的動力性還是燃油經(jīng)濟性都能達到最佳狀態(tài)。

如圖5所示,通過當前發(fā)動機輸出功率曲線與最佳發(fā)動機工作線的交點可以得出當前工況下發(fā)動機的最佳扭矩(節(jié)氣門開度)Y軸和最佳轉速(X軸),HV CPU將二者作為目標參數(shù)發(fā)送至發(fā)動機ECM,由發(fā)動機ECM去控制燃油噴射量、點火正時、ETCS-i(電子節(jié)氣門)和 VVT-i(智能配氣相位)等。

7cd703fc-a062-11ed-bfe3-dac502259ad0.jpg

圖5 發(fā)動機最佳動力性能工作線

當知曉發(fā)動機目標轉速和電動機/發(fā)電機MG2轉速(由解析器傳感器測得)后,HV CPU根據(jù)行星齒輪排的傳動特性(圖6),可以計算出電動機/發(fā)電機MG1的目標轉速,再結合HV CPU內存儲的目標驅動功率脈譜圖,可以確定任一工況下的MG1發(fā)電功率、MG2用電功率、發(fā)動機直接輸出功率及HV蓄電池補償功率的四者之間的協(xié)同關系。為方便理解,示例如下:當HV蓄電池不介入工作時(既不放電也不充電),MG1的發(fā)電/用電功率實時等于MG2的用電/發(fā)電功率,因此當MG1充當發(fā)電機為MG2供電時,HV CPU可通過目標驅動功率脈譜圖和行星齒輪排的傳動特性分別計算出MG1的發(fā)電功率和MG1的目標轉速,由此進一步計算出MG1作為發(fā)電機時所產(chǎn)生的負扭矩大小,再結合行星齒輪排杠桿扭矩的受力平衡特性,進而換算出發(fā)動機的直接輸出扭矩,即:

7ce1fba4-a062-11ed-bfe3-dac502259ad0.jpg

圖6 行星齒輪排傳動特性

發(fā)動機直接輸出扭矩=-MG1扭矩×(0.72/0.28)

隨后讓最先計算得出的駕駛員請求扭矩減去發(fā)動機的直接輸出扭矩,即為MG2作為電動機時的驅動扭矩。即:

駕駛員請求扭矩 -發(fā)動機直接輸出扭矩=MG2扭矩指令值

如圖7所示,根據(jù)工作條件和當前發(fā)動機輸出功率判斷是否需要啟動發(fā)動機。當未達到該確定值時,發(fā)動機停止工作,僅靠HV蓄電池的電能輸出完成行駛(EV行駛稱為電動機行駛的行駛狀態(tài)),此時發(fā)動機所需的動力為零。

7cfa2012-a062-11ed-bfe3-dac502259ad0.jpg

圖7 發(fā)動機輸出功率判斷

回顧圖3,在HV CPU確認MG2的扭矩指令值后,再往下為車輛再生制動的協(xié)調控制策略。純電動汽車、混合動力汽車利用驅動電動機作為發(fā)電機進行控制,因此可以獲得再生制動力。另外,通過與液壓制動力的協(xié)調控制,可以達到與普通內燃機以往車型同等的制動感覺,而且通過再生制動進行能量回收得以降低油耗。圖8所示為雷克薩斯CT200h車型的混合動力系統(tǒng)和制動系統(tǒng)的構成示意圖,它包括松開油門踏板時產(chǎn)生的與發(fā)動機等效的制動力以及操作踩下制動踏板時產(chǎn)生的制動力部分。為了能夠使二者的制動力像普通內燃機的車輛一樣,駕駛員操作制動踏板即可,這樣為了最大限度的得到再生,而使再生制動力與摩擦制動力得到合理的分配,這種控制稱為再生制動協(xié)調控制。

7d063078-a062-11ed-bfe3-dac502259ad0.jpg

圖8 雷克薩斯CT200h車型的混合動力系統(tǒng)和制動系統(tǒng)的構成示意圖

當駕駛員踩下制動踏板時,防滑控制ECU根據(jù)制動調節(jié)器壓力傳感器和制動踏板行程傳感器計算所需總制動力。計算出所需總制動力后,防滑控制ECU將再生制動力請求發(fā)送至動力管理控制ECU(即HV CPU),HV CPU回復實際再生制動量(再生制動控制值),同時利用電動機/發(fā)電機MG2產(chǎn)生負扭矩(減速力),從而進行再生制動,防滑控制ECU控制制動執(zhí)行器電磁閥并產(chǎn)生輪缸壓力,產(chǎn)生的壓力是從所需總制動力中減去實際再生制動控制值后剩余的值。即:

總制動力=液壓制動力+再生制動力

當車速較高時,由于電動機/發(fā)電機MG2的扭矩特性很難獲得足夠的再生制動力,因此需要用摩擦制動力來補充不足的這一部分。隨著車速的降低,再生制動力得以不斷增加,同時又減少摩擦制動力。當車輛停車時,再生制動力大幅度下降,此時利用摩擦制動力來滿足駕駛員所需的制動力(圖9)。

7d12d0bc-a062-11ed-bfe3-dac502259ad0.jpg

圖9 摩擦制動力與駕駛員所需制動力

和再生制動之間的制動力分配根據(jù)車速的不同而變化。盡量多采用再生制動。但是,需要強制動力時,采用液壓制動。車速過低(低于約5km/h)時,系統(tǒng)切換至液壓制動以提高制動感。選擇N擋時由于逆變器斷開,因此只能采用液壓制動。液壓制動和再生制動之間的制動力分配根據(jù)車速的不同而變化(圖10)。

7d1f2ace-a062-11ed-bfe3-dac502259ad0.jpg

圖10 液壓制動與再生制動之間制動力分配變化

根據(jù)HV蓄電池的充電狀態(tài)(SOC),電池可以接受的再生制動力會發(fā)生變化,因此需要根據(jù)具體情況對摩擦制動功率進行調整,該摩擦制動力是由車輪制動液壓缸的液壓控制而產(chǎn)生。除此之外,再生協(xié)調控制協(xié)調還要滿足以下要求:

1.發(fā)動機停止不影響制動力;

2.制動時需要實時調整車輪液壓缸液壓,液壓制動時要盡量避免操作噪聲和振動的產(chǎn)生;

3.液壓控制對制動踏板行程感覺沒有影響;

4.由于要實時進行制動力電子控制,要求具有安全警示功能。

二、帶轉換器的逆變器控制

以雷克薩斯CT200h車型為例,其采用與 MG ECU、逆變器、轉換器和DC-DC轉換器集成于一體的緊湊、輕量化的帶轉換器的逆變器總成,如圖11、圖12所示。逆變器和轉換器主要由智能動力模塊(IPM)、電抗器和電容器組成。2套IPM共有14個絕緣柵雙極晶體管(IGBT)分別構成各自的集成動力模塊,包括信號處理器、保護功能處理器。帶轉換器的逆變器總成采用了獨立于發(fā)動機冷卻系統(tǒng)的水冷型冷卻系統(tǒng),從而確保了散熱。配備了互鎖開關作為安全防護措施(由于帶有高壓),在拆下逆變器端子蓋或斷開HV蓄電池電源電纜連接器時,此開關通過動力管理控制ECU(HV CPU)斷開系統(tǒng)主繼電器。

7d40a44c-a062-11ed-bfe3-dac502259ad0.jpg

圖11 逆變器示意圖

7d56d99c-a062-11ed-bfe3-dac502259ad0.jpg

圖12 帶轉換器的逆變器總成1

逆變器將來自 HV 蓄電池的直流轉換為交流提供給 MG1和 MG2,反之亦然。此外,逆變器將 MG1 產(chǎn)生的電能提供給MG2。然而,MG1 產(chǎn)生的電流在逆變器內轉換為直流后,再被逆變器轉換回交流供 MG2 使用。這是必要的,因為 MG1輸出的交流頻率不適合控制 MG2。如圖13所示,MG ECU根據(jù)接收來自動力管理控制ECU(HV CPU) 的等效PWM波形控制信號控制智能動力模塊(IPM) 內的絕緣柵雙極晶體管(IGBT)。IGBT 用于切換電動機的U、V和W 相。6個IGBT在ON和OFF間切換,控制電動機的扭矩和轉速。同時動力管理控制ECU(HV CPU)接收來自MG ECU所反饋的電動機的實際扭矩、實際轉速及系統(tǒng)過熱、過電流及電壓故障信號,一旦觸發(fā)故障,動力管理控制ECU(HV CPU)切斷至MG ECU的PWM波形控制信號以斷開IPM智能動力模塊。

7d803508-a062-11ed-bfe3-dac502259ad0.jpg

圖13 帶轉換器的逆變器總成2

審核編輯 :李倩

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 混合動力汽車

    關注

    3

    文章

    183

    瀏覽量

    26543
  • 逆變器
    +關注

    關注

    280

    文章

    4646

    瀏覽量

    205636
  • 豐田
    +關注

    關注

    6

    文章

    774

    瀏覽量

    40850

原文標題:豐田THS-II混合動力核心控制策略介紹(一)

文章出處:【微信號:EDC電驅未來,微信公眾號:EDC電驅未來】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    插電式混合動力汽車的特點

    插電式混合動力汽車,作為現(xiàn)代汽車工業(yè)中的顆璀璨明星,正以其獨特的優(yōu)勢吸引著越來越多的消費者。這類汽車結合了傳統(tǒng)內燃機和電動機的優(yōu)勢,通過插電方式進行充電,既滿足了日常短途純電行駛的需求,又保留
    的頭像 發(fā)表于 10-04 16:48 ?212次閱讀

    TCS系統(tǒng)的核心控制策略與方法

    在現(xiàn)代汽車工業(yè)中,提升駕駛安全的技術直是研發(fā)的重點。汽車牽引力控制系統(tǒng)(TCS)作為其中的個關鍵組成部分,通過確保車輛加速時的最佳牽引力與穩(wěn)定性,顯著增強了駕駛安全性能。 TCS系統(tǒng)的核心
    的頭像 發(fā)表于 08-29 11:25 ?357次閱讀

    豐田加速混動汽車升級:全面混動化計劃

    ”。   豐田北美區(qū)銷售和營銷領導人大衛(wèi)·克里斯特向路透社表示,“我們計劃在未來逐個車系評估全混合動力的合理性?!边@將在每次車型重新設計中進行。
    的頭像 發(fā)表于 08-16 16:25 ?1316次閱讀

    混聯(lián)式混合動力汽車核心組件介紹

    混聯(lián)式驅動系統(tǒng)融合了串聯(lián)式與并聯(lián)式的技術特點,其構成如下圖所示: 核心組件包括發(fā)動機、發(fā)電機、功率轉換器、電機控制器、驅動電機、動力耦合器以及動力電池系統(tǒng)等。 發(fā)動機輸出的能量
    的頭像 發(fā)表于 08-13 18:16 ?657次閱讀
    混聯(lián)式<b class='flag-5'>混合</b><b class='flag-5'>動力</b>汽車<b class='flag-5'>核心</b>組件<b class='flag-5'>介紹</b>

    并聯(lián)式混合動力汽車的特征介紹

    并聯(lián)式混合動力系統(tǒng)具備獨特的構造特征 其核心在于能夠通過發(fā)動機或電動機獨立驅動車輛,或二者合作提供動力,同時保留傳統(tǒng)變速器的配置。簡言之,這種系統(tǒng)可被理解為傳統(tǒng)汽車添加了電動機的功能。
    的頭像 發(fā)表于 08-13 18:01 ?531次閱讀

    5000臺豐田bZ3集中交付,榮浩出行攜手豐田開啟新篇章

    6月3日,榮浩出行與廣博豐田共同在廣州舉辦了場盛大的5000臺豐田bZ3集中交付儀式?;顒蝇F(xiàn)場,嶄新的豐田bZ3整齊排列,吸引了眾多行業(yè)領袖和媒體記者的目光。在他們的共同見證下,50
    發(fā)表于 06-06 14:37

    淺談光儲微電網(wǎng)混合儲能系統(tǒng)的控制策略

    策略種理想形式,但實際上蓄電池的容量是有限度的,傳統(tǒng)控制策略在蓄電池剩余電量達到闔值時將無法正常使用,由此提出了光儲微電網(wǎng)混合儲能系統(tǒng)的新
    的頭像 發(fā)表于 05-31 10:40 ?679次閱讀
    淺談光儲微電網(wǎng)<b class='flag-5'>混合</b>儲能系統(tǒng)的<b class='flag-5'>控制</b><b class='flag-5'>策略</b>

    豐田與比亞迪達成插混合作?豐田回應來了

    新時代的挑戰(zhàn)。豐田與比亞迪的合作主要集中在純電動汽車(BEV)領域,并未涉及其他技術層面。 此外,豐田中國還就近期些流言進行了澄清,特別是關于前CEO豐田章男對中國新能源汽車市場及中
    的頭像 發(fā)表于 05-13 11:31 ?502次閱讀

    豐田轉向多元戰(zhàn)略,電動汽車戰(zhàn)略或將重塑

    此外,豐田的規(guī)劃團隊也在商討是否要放棄“bZ”系列命名方式,或是回歸傳統(tǒng)命名。據(jù)了解,豐田計劃將SUV型號漢蘭達改成純電動版,并在肯塔基州的工廠進行生產(chǎn);同時,更高級別的“大漢蘭達”(僅面向美國市場銷售)設有油電混合
    的頭像 發(fā)表于 04-17 16:55 ?573次閱讀

    混合動力汽車驅動系統(tǒng)的啟動/停止功能

    輕度混合動力和全混合動力都具有啟動/停止功能(圖1-8)。但是,傳統(tǒng)驅動汽車也可裝備套啟動/停止系統(tǒng)。
    的頭像 發(fā)表于 01-23 13:41 ?662次閱讀
    <b class='flag-5'>混合</b><b class='flag-5'>動力</b>汽車驅動系統(tǒng)的啟動/停止功能

    解析與探討混合動力汽車驅動系統(tǒng)工作模式

    混合動力行駛指的是內燃機和電動機都產(chǎn)生驅動扭矩的所有狀態(tài)(圖1-3)。在考慮如何分配驅動扭矩時,混合動力控制系統(tǒng)在優(yōu)化目標(油耗排放)之外尤
    發(fā)表于 01-21 11:43 ?680次閱讀
    解析與探討<b class='flag-5'>混合</b><b class='flag-5'>動力</b>汽車驅動系統(tǒng)工作模式

    混合動力汽車驅動系統(tǒng)原理

    電動混合動力汽車(圖1-1)基本上遵循3個目標:節(jié)約燃油、降低排放、提高扭矩和功率(“駕駛樂趣”)。其中,根據(jù)不同的目標使用不同的混合動力方案。
    發(fā)表于 01-18 16:10 ?625次閱讀
    <b class='flag-5'>混合</b><b class='flag-5'>動力</b>汽車驅動系統(tǒng)原理

    尼得科動力系統(tǒng)研發(fā)出混合動力電動汽車離合器控制模塊新產(chǎn)品

    ? 此次,尼得科株式會社的集團公司——尼得科動力系統(tǒng)(舊日本電產(chǎn)東測)研發(fā)出了混合動力電動汽車離合器控制模塊的新產(chǎn)品。 離合器控制模塊 盡管
    的頭像 發(fā)表于 12-28 16:03 ?339次閱讀

    逆變電路的控制策略與方法介紹

    的性能。 脈沖寬度調制(PWM) 脈沖寬度調制是種常見的逆變電路控制策略,通過改變開關器件的導通時間來調節(jié)輸出電壓。PWM控制策略具有實現(xiàn)
    的頭像 發(fā)表于 12-27 17:14 ?1508次閱讀
    逆變電路的<b class='flag-5'>控制</b><b class='flag-5'>策略</b>與方法<b class='flag-5'>介紹</b>

    東風PHEV混合動力系統(tǒng)的構成和控制策略

    插電式混合動力汽車(Plug-in hybrid electric vehicle,簡稱PHEV),是介于純電動汽車與燃油汽車兩者之間的種新能源汽車,兼顧了純電動車和燃油車的優(yōu)勢,既可實現(xiàn)純電動零排放行駛,也能通過混動模式增加
    的頭像 發(fā)表于 11-06 10:24 ?1360次閱讀
    東風PHEV<b class='flag-5'>混合</b><b class='flag-5'>動力</b>系統(tǒng)的構成和<b class='flag-5'>控制</b><b class='flag-5'>策略</b>