0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

LTT光觸發(fā)晶閘管的仿真建模

冬至子 ? 來源:半導(dǎo)體器件仿真 ? 作者:半導(dǎo)體器件仿真 ? 2023-04-24 16:47 ? 次閱讀

功率半導(dǎo)體器件作為電力電子系統(tǒng)中各種拓撲電路的核心電子元器件,能夠?qū)︻l率和功率的變換進行控制、交直流電壓進行轉(zhuǎn)換。功率半導(dǎo)體技術(shù)的發(fā)展推動著各種高性能、高可靠性的電力電子系統(tǒng)的發(fā)展。人們通常把功率半導(dǎo)體器件分為三代。

晶閘管(Thyristor)或可控硅(SCR)為主的可承受高壓大電流的大功率容量器件為第一代,被各種電力電子系統(tǒng)領(lǐng)域所應(yīng)用。同時,由于應(yīng)用場景的需要,逆導(dǎo)晶閘管和光控晶閘管也在此基礎(chǔ)上受到了廣泛研究與應(yīng)用。圖1是晶閘管的基本結(jié)構(gòu)以及等效電路圖。

圖片

圖1 晶閘管結(jié)構(gòu)圖和等效電路圖

自 20 世紀 70 年代以來,光控晶閘管在高壓直流(HVDC)輸電系統(tǒng)中廣泛應(yīng)用,其能解決電控晶閘管無法實現(xiàn)的柵極驅(qū)動電路的低抖動電隔離,光觸發(fā)的晶閘管使用一直引起人們的廣泛關(guān)注。早在 1981 年EPRI 組織就研究發(fā)現(xiàn),電觸發(fā)和光觸發(fā)晶閘管導(dǎo)通之間的物理差異。研究表明在光觸發(fā)機制中有一個額外的電流,使得陽極 PN 結(jié)處比傳統(tǒng)的電觸發(fā)提前注入了載流子,這使得器件的 di/dt 提高到了 800 A/μs。1990 年,富士電氣公司提出了一種改進的光觸發(fā)晶閘管設(shè)計方案,通過注入鋁和磷離子來制造器件,以此提高摻雜均勻性,使得晶閘管的電壓、峰值電流和 di/dt 耐量分別達到了 6000V、2.5 kA 和300 A/μs。

由于晶閘管 di/dt 耐量提高到 k A/μs 范圍,對于脈沖功率應(yīng)用中開關(guān)器件的需求也隨之而來。在 1994,羅格斯大學(xué)的研究人員報告了 InP 和 Ga As 基的光柵晶閘管的發(fā)展成果。在晶閘管基本 pn 結(jié)構(gòu)之間,這兩種器件都有一個大面積的 InP 或 Ga As 材料的的半絕緣層,用來提供大的阻斷電壓。對于 InP 基結(jié)構(gòu),新器件的最大電壓、電流和 di/dt 值分別為 1200 V、61 A,14 kA/μs,而對于和 Ga As基器件來說,它們分別為2120 V,156 A,8.5 kA/μs。雖然這些器件的 di/dt 能力都呈數(shù)量級的增加,但都是以幾乎相同的幅度降低其額定電流為代價。

在大功率系統(tǒng)中,如電力傳輸網(wǎng)絡(luò),系統(tǒng)的工作電壓非常大。通常,它們遠遠超過了單功率晶閘管(SCR)的阻擋能力。因此,有必要串聯(lián)操作一些晶閘管。在這種配置中,觸發(fā)單個晶閘管所需的巨大電位差可能并不容易獲得。使用光纖將控制信號從砷化鎵發(fā)光二極管LED)傳輸?shù)皆撓盗兄械乃芯чl管是一種避免需要高壓柵極驅(qū)動簡潔高效的方式。然而,砷化鎵的led只提供相對較小的輸出功率。因此,需要在光柵附近設(shè)置放大柵區(qū)域用于打開主晶閘管。

圖2為本文工程的截圖,首先通過SDE構(gòu)建一個三維SCR的結(jié)構(gòu),隨后通過SDEVICE施加100V電學(xué)偏置和不同光強及范圍的光學(xué)脈沖,最后通過SVISUAL展示出在不同光學(xué)條件下,陽極電流和光生率隨時間變化的曲線。 整個工程可以用來研究多大的光束強度或光束半徑足以觸發(fā)晶閘管 。

圖片

圖2 工程界面

圖2中的參數(shù)具體含義如下:

Lgate:定義了光柵的半徑。這里為100um。

Lbeam:定義了光束的半徑。在這里,它定義的值分別為20和80um。

Intensity:定義了光束的強度。在這里,它假設(shè)的值分別為1.0、4.0、5.29和5.30 W/cm2。

SDE構(gòu)建SCR器件結(jié)構(gòu)和摻雜分布

本文構(gòu)建的晶閘管結(jié)構(gòu)是一個圍繞垂直軸旋轉(zhuǎn)對稱的三維器件。使用了圓柱形坐標系在一個二維網(wǎng)格和徑向切片的基礎(chǔ)上進行仿真構(gòu)建(后續(xù)將對圓柱形坐標系進行介紹)。

如圖3二維徑向切片由一個520um寬,90um深的矩形硅區(qū)域組成。陰極覆蓋了器件的整個底部。晶閘管的徑向結(jié)構(gòu)為:光柵區(qū)域在中心。它的長度由參數(shù)Lgate定義。在柵和陽極之間有一個放大區(qū)域。它由沉積在硅襯底上的兩個內(nèi)外金屬環(huán)組成。第一個環(huán)的寬度為22.5um。在徑向距離25um之后,淀積第二金屬環(huán)。第二個環(huán)的寬度為137um。在徑向距離28um之后,則是陽極接觸。

陰極與一個p摻雜的擴散區(qū)接觸。峰值濃度為1e19cm-3,結(jié)深10um。中心區(qū)域均勻摻雜n為60um厚,摻雜為1e14cm-3。

頂部區(qū)域20um內(nèi),p摻雜水平是恒定的。在這個區(qū)域,有三個n阱摻雜(峰值摻雜濃度為1e19cm-3)。

第一構(gòu)成陽極,第二構(gòu)成放大柵極,并位于外金屬環(huán)下。第三個位于器件的中心,構(gòu)成光柵。陽極n阱的結(jié)深度為10um,光學(xué)和放大柵極n阱的結(jié)深為15um。

圖片

圖3 器件徑向二維結(jié)構(gòu)圖

電學(xué)仿真

1.坐標系

圓柱坐標系為用于建??梢杂脧较颍é眩┖透叨龋▃)表達的具有圓柱形且對稱的三維器件。需要假設(shè)器件對于所有方位角(?)都相同。這樣,3D器件就可以在2D坐標系中進行表述。

這里,晶閘管圍繞垂直軸x=0。繪制的2D平面器件被視為圓柱對稱的(ρ,z)平面。笛卡爾x坐標變?yōu)閳A柱-ρ坐標,笛卡爾y坐標變?yōu)閳A柱形z坐標。

Sdevice假設(shè)2D結(jié)構(gòu)旋轉(zhuǎn)完全圍繞笛卡爾x軸(圓柱形z軸)進行。2D網(wǎng)格可以用于仿真三維圓柱形器件,其結(jié)果相當于一個三維晶閘管。因此,仿真結(jié)果中的電流單位為安培(A)而不是用于2D器件結(jié)構(gòu)或網(wǎng)格的單位A/μm。

柱面坐標系可以被以下關(guān)鍵詞激活:

Math { ...

Cylindrical(0.0)

}

其中,0.0定義了x坐標中對稱軸的位置。

2.模型選擇

仿真使用漂移擴散傳輸模型,其中載流子連續(xù)性方程與泊松方程一起求解。肖克利-霍爾、俄歇產(chǎn)生復(fù)合模型與Slotboom禁帶變窄模型同時被激活。還使用了依賴摻雜的遷移率模型,并考慮了高場飽和效應(yīng)。漂移擴散傳輸模型同時考慮了電子和空穴,這樣仿真時可以根據(jù)費米能級的梯度計算出電子和空穴的驅(qū)動力得到更準確的遷移率數(shù)值。

3.光學(xué)設(shè)置

晶閘管的一部分受到來自上方單色光束的照射。光照射到的地方,能量等于或大于硅帶隙的光子被吸收在半導(dǎo)體中產(chǎn)生電子-空穴對。光生率表示由于光子被硅吸收產(chǎn)生的電子空穴對的比例。根據(jù)朗伯比爾定律。光束強度從照明部分的頂面隨著半導(dǎo)體深度的增加呈指數(shù)減少。

這里使用如下的光學(xué)設(shè)置。所有的光學(xué)選項,如特定于光學(xué)仿真的材料特性和模型、入射光束的特性、光束的空間范圍和時間范圍,以及光學(xué)求解器及其選項,都在物理{光學(xué)(…)}部分中指定。:

Physics {...

Optics (

ComplexRefractiveIndex (

WavelengthDep(Real Imag)

)

OpticalGeneration (

QuantumYield(StepFunction(EffectiveBandgap))

ComputeFromMonochromaticSource (

TimeDependence (

WaveTime= (1e-5 1.5e-5)

WaveTsigma= 1e-6

Scaling = 1.0 * Transient Scaling

) *end TimeDependence

Scaling = 1e-30 * DC Scaling

) *end ComputeFromMonochromaticSource

) *end OpticalGeneration

Excitation (

Theta= 0

Intensity= @Intensity@ * [W/cm2]

Wavelength= 0.9 * [um]

Window("L1") (

Origin= (0,0,0)

XDirection= (1,0,0)

Line (

X1= 0

X2= @Lbeam@

) *end Line

) * end Window

) * Excitation

OpticalSolver (

OptBeam (

LayerStackExtraction (

WindowName= "L1"

Position= (@@,0,0)

Mode= RegionWise

) *end LayerStackExtraction

) *end OptBeam

) *end OpticalSolver

) *end Optics

} *end Physics

這些光學(xué)選項將在以下部分中指定:

ComplexRefractiveIndex

OpticalGeneration

Excitation

OpticalSolver

利用吸收系數(shù)和量子產(chǎn)生率可以計算晶閘管內(nèi)部的光生率。吸收系數(shù)與復(fù)折射率的虛部成正比。波長相關(guān)的復(fù)合折射率模型使用ComplexRefractiveIndex關(guān)鍵字和 WavelengthDep(Real Imag)被激活。量子產(chǎn)生率模型(關(guān)鍵字QuantumYield)和照明光源的類型在OpticalGeneration部分中指定。

照明光源的類型被指定為單色光,使用關(guān)鍵字ComputeFromMonochromaticSource,它也被用于指定一個縮放因子(關(guān)鍵字Scaling),用于在準靜態(tài)或瞬態(tài)仿真中縮放光學(xué)生成率)。在準靜態(tài)仿真中,OpticalGeneration-ComputeFromMonochromaticSource部分中指定的比例關(guān)鍵字將光生率與比例因子相乘。在這里,它被設(shè)置為1e-30,因此所有準靜止斜坡的光生率幾乎為零。為了仿真光觸發(fā)晶閘管的時變開關(guān)特性,用WaveTime和WaveTsigma定義了光脈沖的高斯時間分布。

這些內(nèi)容在OpticalGeneration-ComputeFromMonochromaticSource-TimeDependence部分中指定。WaveTime是入射光束強度恒定時的時間。WaveTsigma是時間高斯分布的標準偏差,它描述了在時間間隔波時間外的光產(chǎn)生率的衰減。本仿真中,脈沖峰值從10us到15us(WaveTime =(1e-5 1.5e-5))。在其開始和結(jié)束時,脈沖呈高斯分布,標準差為(WaveTsigma = 1e-6)。

如果在瞬態(tài)仿真中需要縮放光生率,則必須在OpticalGeneration-ComputeFromMonochromaticSource-TimeDependence部分中指定關(guān)鍵字Scaling。本仿真中,Scaling=1,因此,光生率沒有縮放。入射光束的特性,如強度、波長和入射角(傳播方向和正y軸之間的角度)在Excitation部分中規(guī)定。在這里,波長為0.9um和強度為交互界面中參數(shù)輸入的數(shù)值。Theta=0,光沿正方向(向下方向)傳播。光束的空間范圍由名為L1的照射窗口指定。

4.求解設(shè)置

求解部分設(shè)置如下:

Solve {

Coupled(Iterations= 100) { Poisson }

Coupled {Poisson Electron}

Quasistationary (

InitialStep= 1e-4 Increment= 2.0

Minstep= 1e-6 MaxStep= 0.1

Goal {name="Anode" voltage= 1e2}

){ Coupled { Poisson Electron Hole } }

Transient (

Initialtime= 0 Finaltime= 1e-4

Initialstep= 1e-7 Increment= 1.5 Decrement= 4

Minstep= 1e-11 Maxstep= 1e-4

){ Coupled { Poisson Electron Hole } ...}

}

Poisson指定初始解僅用泊松方程。第二步同時求解泊松方程和電子連續(xù)性方程。在第三步中,晶閘管通過使用準靜態(tài)升壓斜坡將陽極電壓提高到100 V來進行偏壓。接下來是一個瞬態(tài)仿真,晶閘管的一部分被具有高斯時間輪廓的光脈沖照射。對于準靜態(tài)和瞬態(tài)仿真,都求解了泊松方程以及電子和空穴連續(xù)性方程。

在光學(xué)計算與電學(xué)計算的過程中,從一開始就已經(jīng)計算光學(xué)生成速率,并在隨后的步驟中使用。這意味著光在所有的仿真階段都被打開了。然而,只有在瞬態(tài)仿真過程中,晶閘管才必須通過光脈沖照明來觸發(fā)。因此,在進行瞬態(tài)仿真之前,應(yīng)關(guān)閉光束或不應(yīng)照亮晶閘管。

這可以通過縮放所有準穩(wěn)態(tài)斜坡的光產(chǎn)生速率(乘以比例因子)來實現(xiàn),使光產(chǎn)生速率降低到一個可以忽略的值。正如前文光學(xué)設(shè)置中所討論的,這是通過使用OpticalGeneration-ComputeFromMonochromaticSource部分中的關(guān)鍵字指定縮放因子并將其設(shè)置為1e-30來實現(xiàn)的。

在瞬態(tài)仿真中,如果解不能與當前步長收斂,則選擇設(shè)置Decrement減小步長以更好地解決陡峭的時間梯度。如果使用向后的歐拉方法作為時間離散化方法,瞬態(tài)仿真通常運行得更快,而且魯棒性更強。該方法由以下方式激活打開:

Math {...

Transient= BE

}

Svisual查看仿真結(jié)果

圖片

圖4 不同光強和光照區(qū)域光生率和電流隨時間變化曲線圖

圖片

圖5 80um光照半徑,1W/cm2條件下電子電流密度圖

圖片

圖6 80um光照半徑,1W/cm2條件下電勢分布圖

圖片

圖7 80um光照半徑,1W/cm2條件下光強分布圖

本文器件描述參考鄧操碩士學(xué)位畢業(yè)論文和新思公司SENTAURUS說明文檔

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 可控硅
    +關(guān)注

    關(guān)注

    43

    文章

    894

    瀏覽量

    71519
  • 晶閘管
    +關(guān)注

    關(guān)注

    35

    文章

    1097

    瀏覽量

    76984
  • SCR
    SCR
    +關(guān)注

    關(guān)注

    2

    文章

    149

    瀏覽量

    44083
  • 驅(qū)動電路
    +關(guān)注

    關(guān)注

    152

    文章

    1515

    瀏覽量

    108244
  • 功率半導(dǎo)體
    +關(guān)注

    關(guān)注

    22

    文章

    1102

    瀏覽量

    42799
收藏 人收藏

    評論

    相關(guān)推薦

    什么是晶閘管,GK型開關(guān)管

    的Ia達到最大,即完全導(dǎo)通。能使晶閘管導(dǎo)通的最小光照度,稱其為導(dǎo)通光照度。 晶閘管與普通晶閘管一樣,一經(jīng)
    發(fā)表于 04-26 16:00

    晶閘管的等效電路圖

    晶閘管與普通晶閘管一樣,一經(jīng)觸發(fā),即成通導(dǎo)狀態(tài)。只要有足夠強度的光源照射一下管子的受窗口,它就立即成為通導(dǎo)狀態(tài),而后即使撤離光源也能維持導(dǎo)通,除非加在陽極和陰極之間的電壓為零或反相
    發(fā)表于 04-26 16:05

    控整流感觸發(fā)晶閘管電路圖

    控整流感觸發(fā)晶閘管電路圖
    發(fā)表于 06-04 14:51 ?520次閱讀
    <b class='flag-5'>光</b>控整流感<b class='flag-5'>觸發(fā)</b><b class='flag-5'>晶閘管</b>電路圖

    靈敏觸發(fā)晶閘管

    靈敏觸發(fā)晶閘管 靈敏觸發(fā)晶閘管觸發(fā)電流很小,僅有20 - 500μA ,其主要特性參數(shù)見表17-6 。
    發(fā)表于 09-19 16:56 ?436次閱讀

    什么是高電壓、大電流晶閘管

    什么是高電壓、大電流晶閘管 作為數(shù)千V、數(shù)百A的電力控制用器件,分成GTO(門極關(guān)斷晶閘管)和LTT觸發(fā)
    發(fā)表于 03-01 11:20 ?1762次閱讀

    晶閘管,晶閘管是什么意思

    晶閘管,晶閘管是什么意思 晶閘管也稱GK型
    發(fā)表于 03-03 14:27 ?1650次閱讀

    光敏晶體管控整流橋觸發(fā)晶閘管電路圖

    光敏晶體管控整流橋觸發(fā)晶閘管電路圖
    發(fā)表于 04-01 09:03 ?1251次閱讀
    光敏晶體管<b class='flag-5'>光</b>控整流橋<b class='flag-5'>觸發(fā)</b><b class='flag-5'>晶閘管</b>電路圖

    近幾年有什么新型晶閘管(功率半導(dǎo)體器件)

    晶閘管(SCR/GTO)自問世以來,其功率容量提高了近3000倍。日本現(xiàn)在已投產(chǎn)8kV / 6kA和6kV / 6kA的觸發(fā)晶閘管(LTT
    發(fā)表于 02-25 14:16 ?0次下載

    太陽能伏發(fā)電并網(wǎng)系統(tǒng)的建模仿真

    太陽能伏發(fā)電并網(wǎng)系統(tǒng)的建模仿真
    發(fā)表于 11-04 19:13 ?13次下載

    英飛凌推出觸發(fā)晶閘管

    據(jù)報道,英飛凌科技Bipolar有限公司進一步擴大雙極半導(dǎo)體產(chǎn)品陣容,推出觸發(fā)晶閘管,它們可增強系統(tǒng)可靠性、降低系統(tǒng)成本并簡化超大功率應(yīng)用的設(shè)計。英飛凌新推出的6英寸晶閘管搭載可靠的
    發(fā)表于 04-17 17:57 ?1997次閱讀

    晶閘管的結(jié)構(gòu)及工作原理

    的一種基本類型一普通晶閘管。但從廣義上講,晶閘管還包括許多派生器件,如雙向晶閘管(TRIAC)、快速晶閘管(FST)、逆導(dǎo)型晶閘管(RCT)
    的頭像 發(fā)表于 02-14 12:30 ?7w次閱讀
    <b class='flag-5'>晶閘管</b>的結(jié)構(gòu)及工作原理

    使用單片機實現(xiàn)過零觸發(fā)雙向晶閘管仿真設(shè)計實例文件免費下載

    本文檔的主要內(nèi)容詳細介紹的是使用單片機實現(xiàn)過零觸發(fā)雙向晶閘管仿真設(shè)計實例仿真文件免費下載。
    發(fā)表于 03-11 13:53 ?42次下載

    基于MATLAB_Simulink的伏電池建模仿真

    基于MATLAB_Simulink的伏電池建模仿真說明。
    發(fā)表于 04-28 11:14 ?103次下載

    晶閘管適用于什么場合

    晶閘管(Optically Controlled Thyristor,簡稱OCT)是一種集成了觸發(fā)元件和晶閘管的半導(dǎo)體器件。它可以通
    發(fā)表于 02-28 11:30 ?1202次閱讀

    什么是晶閘管的過零觸發(fā)和移相觸發(fā)

    晶閘管,作為一種關(guān)鍵的半導(dǎo)體器件,廣泛應(yīng)用于電力電子、自動化控制等領(lǐng)域。在晶閘管的控制技術(shù)中,過零觸發(fā)和移相觸發(fā)是兩種重要的觸發(fā)方式。它們通
    的頭像 發(fā)表于 05-27 14:41 ?1152次閱讀