0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

海水電池:固體電解質(zhì)是終極解決方案嗎?

清新電源 ? 來源:能源學(xué)人 ? 2023-05-20 09:13 ? 次閱讀

【研究背景】

碳中和背景下,海水電池(SWB)的概念被提出,無限的海水資源可以使其作為長期能量存儲體系,且符合全球凈零排放的目標(biāo)。海水電池使用海水和其堿金屬離子進行工作,如Na+從正極室通過固態(tài)電解質(zhì)膜被輸送到硬碳負極室,在負極處的氧化和氧在正極處的還原反應(yīng)作用下,形成可溶性金屬氯化物,總的電化學(xué)反應(yīng)可產(chǎn)生3.4V電壓。海水電池系統(tǒng)中合適的負極是保證Na+可逆儲存的關(guān)鍵,有機電解質(zhì)的選擇對其電化學(xué)性能和實用性有很大影響。固體電解質(zhì)(SE)是負極室和正極室之間的分離層,其不僅應(yīng)促進Na+傳輸能力,而且還需對鹽水穩(wěn)定并可以充當(dāng)水性電解質(zhì)和非水電解質(zhì)之間的物理屏障。Nasicon型Na3Zr2Si2PO12(NZSP)材料作為固態(tài)電解質(zhì)具有高離子電導(dǎo)率,但也經(jīng)常遇到諸如枝晶生長和循環(huán)不良的問題,最終導(dǎo)致電池的失效,其失效機制通常與不穩(wěn)定的界面有關(guān),因此需要進一步進行探索改性,并對其在海水電池中的應(yīng)用進行研究。

【成果簡介】

近期,美國橡樹嶺國家實驗室Ilias Belharouak團隊在Advanced Science上發(fā)表了題為“Na3Zr2Si2PO12Solid Electrolyte Membrane for High-Performance Seawater Battery”的文章。該工作針對海水電池體系,在Nasicon型固體電解質(zhì)Na3Zr2Si2PO12中引入TiO2摻雜劑,獲得了具有均勻分布的多孔結(jié)構(gòu)和更致密堆積顆粒,具有高離子電導(dǎo)率和Na+傳輸能力,有助于臨界電流密度,具有可逆容量的穩(wěn)定循環(huán)性能,這對于海水電池的實際應(yīng)用具有重要意義。

【研究亮點】

1.設(shè)計了Ti摻雜的新型Nasicon型固態(tài)電解質(zhì),具有高離子電導(dǎo)率和離子傳輸能力。

2.開發(fā)了高穩(wěn)定性固體電解質(zhì)海水電池體系,并對比了不同儲能機制下電池性能。

【研究內(nèi)容】

926d2b3c-f6a8-11ed-90ce-dac502259ad0.png

圖1SWB工作原理圖及NZSP固態(tài)電解質(zhì)結(jié)構(gòu)形貌表征。

92a46c1e-f6a8-11ed-90ce-dac502259ad0.png

圖2不同摻雜NZSP固態(tài)電解質(zhì)元素分析。

海水電池結(jié)構(gòu)組成。圖1a展示了SWB系統(tǒng)的示意圖,由有機電解質(zhì)中的硬碳負極和海水電解質(zhì)中的碳紙正極組成,正負極被NZSP固態(tài)電解質(zhì)(SE)分隔開。作者為了模擬實際的SWB并研究負極室,在Na2SO4中進行實驗,同時通過在Na3Zr2Si2PO12固態(tài)電解質(zhì)(NZSP)中引入不同的摻雜劑(Al2O3和TiO2),來調(diào)節(jié)NZSP的化學(xué)、結(jié)構(gòu)和電化學(xué)性能以滿足用于SWB應(yīng)用的要求。結(jié)構(gòu)和形貌分析結(jié)果表明,Al-NZSP和Ti-NZSP具有高結(jié)晶度且顆粒緊密堆積,同時Ti-NZSP元素分布更均勻。分析XPS結(jié)果可知,Ti摻雜后,Zr-3d軌道向高結(jié)合能偏移,表明Zr實現(xiàn)較高氧化態(tài),表明成功摻雜進入母體,而Al-NZSP則不發(fā)生明顯變化,說明Al2O3是以單獨相引入,不利于電化學(xué)改性。

92f2aa96-f6a8-11ed-90ce-dac502259ad0.png

圖3不同摻雜NZSP離子電導(dǎo)率和對稱電池分析。

930d2b8c-f6a8-11ed-90ce-dac502259ad0.png

圖4不同摻雜NZSP阻抗分析。

固態(tài)電解質(zhì)離子傳輸能力分析。圖3為NZSP,Al-NZSP和Ti-NZSP的顆??傠妼?dǎo)率,電導(dǎo)率總體趨勢為Ti-NZSP>Al-NZSP>NZSP,20℃下電導(dǎo)率分別為1.55,0.38和0.34 mS cm-1,這表明Ti-NZSP具有較高Na+傳輸能力。根據(jù)鈉離子對稱電池測試,Ti-NZSP具有最高臨界電流值為2.5 mA cm-2(NZSP和Al-NZSP為1.4 mA cm-2和0.05 mA cm-2),高臨界電流值有助于開發(fā)高倍率性能,對于整個能量存儲體系至關(guān)重要。此外,分析電化學(xué)阻抗結(jié)果,發(fā)現(xiàn)初始階段三種固態(tài)電解質(zhì)阻值相似,循環(huán)幾圈后Ti-NZSP阻抗得到輕微改善,而Al-NZSP阻值顯著增大,表明Na/Ti-NZSP界面處更為穩(wěn)定,有助于改善電池性能。

932b1eda-f6a8-11ed-90ce-dac502259ad0.png

圖5同步輻射數(shù)據(jù)和X射線斷層掃描。

Ti-NZSP體相性質(zhì)分析。為了進一步表征Ti-NZSP顆粒的體相性質(zhì),對顆粒進行了同步輻射X射線吸收近邊結(jié)構(gòu)(XANES)分析,在Ti-K邊處觀察到至少兩種不同的Ti局部結(jié)構(gòu),4968 eV處的尖銳高峰對應(yīng)于高度扭曲的TiO6八面體,在4966、4969和4973 eV附近包含三個峰,且向定量移動,更類似于金紅石結(jié)構(gòu),目前還無法清楚Ti-NZSP的具體內(nèi)部環(huán)境,但是清楚的是該變化與TiO6八面體和Ti配位有關(guān)。同時為了評估三種SE的微觀結(jié)構(gòu),對燒結(jié)的粒料進行同步加速器X射線斷層掃描,重構(gòu)圖像能夠可視化SE中的孔隙率分布,總的來說,與原始NZSP材料相比,Al和Ti摻雜的NZSP的孔隙率略低,且歸一化孔隙率圖證明NZSP和Ti-NZSP燒結(jié)相對均勻,而Al-NZSP顯示出與標(biāo)準的大偏差的孔隙率,微觀結(jié)構(gòu)局部不均勻會加速SE的失效,這與電化學(xué)性能結(jié)果相一致。

93571abc-f6a8-11ed-90ce-dac502259ad0.png

圖6SWB工作原理及電化學(xué)性能。

電化學(xué)性能分析。為了模擬實際SWB系統(tǒng),將Ti-NZSP引入作為Na|Ti–NZSP|HC電池的固態(tài)電解質(zhì),并通過改變截至電壓研究了兩種不同的存儲機制:(1)Na+嵌入硬碳;(2)Na+嵌入硬碳內(nèi)部同時Na+沉積在硬碳表面,嵌入機制可以確保在實際SWB內(nèi)的良好安全性,但能量密度有限;沉積機制可以確保系統(tǒng)具有更高的能量密度,但存在安全問題,需要高性能SE物理分離實際SWB中的負極和正極室以減輕安全風(fēng)險。對于具有嵌入機制的電池配置(圖6B和C),在C/5下,以81%的庫侖效率提供110 mAh g-1的初始容量,循環(huán)30次后,容量為80 mAh g-1;對于電沉積機制電池配置,更多的Na可以以金屬形式儲存,具有更高能量密度和穩(wěn)定Na+儲存的充電/放電能量,使用Ti–NZSP可以穩(wěn)定循環(huán)超過50次。總的來說,Ti–NZSP在Na2SO4中表現(xiàn)出穩(wěn)定電化學(xué)性能,有利于SWB電池實際應(yīng)用。

937f2fde-f6a8-11ed-90ce-dac502259ad0.png

圖7循環(huán)后不同SE形貌分析。

93d0abe8-f6a8-11ed-90ce-dac502259ad0.png

圖8循環(huán)后不同SE的XPS結(jié)果。

穩(wěn)定性分析。最后,對循環(huán)后的固態(tài)電解質(zhì)顆粒進行表征,圖7為循環(huán)的NZSP、Al-NZSP和Ti-NZSP的SEM和EDX結(jié)果。結(jié)果發(fā)現(xiàn),對于NZSP和Ti-NZSP的所有顆粒,均沒有觀察到明顯的結(jié)構(gòu)變化的,而Al-NZSP形成了30 μm厚的中間層,其富含Na、O和F,但不富含Al,該中間層的形成可歸因于(1)Na3Zr2(SiO4)2(PO4)和NaZr2(PO4)3相偏析;(2)不穩(wěn)定固體電解質(zhì)膜的形成。同時循環(huán)后XPS結(jié)果證明,對比Ti-NZSP顆粒的初始和循環(huán)后Ti-2p軌道,發(fā)現(xiàn)電化學(xué)循環(huán)或中間層的形成不改變固體電解質(zhì)顆粒的表面化學(xué)態(tài),對于高穩(wěn)定的化學(xué)性能具有重要幫助。

【文獻總結(jié)】

綜上所述,本文作者開發(fā)了Nasicon型固體電解質(zhì)用于海水電池的新應(yīng)用,在不產(chǎn)生新相的情況下,TiO2的引入導(dǎo)致更致密的SE和具有氧化元素的改性NZSP表面。在Ti摻雜的情況下,Ti-NZSP SE的離子電導(dǎo)率達到4.20 mS cm-1,在鈉離子對稱電池中,Ti-NZSP中實現(xiàn)了~2.5mA cm-2的高臨界電流密度。對于實際海水電池應(yīng)用,用Na2SO4模擬SWB,構(gòu)筑Na|Ti-NZSP|HC電池體系,并且基于嵌入或電鍍機制,表現(xiàn)出優(yōu)異的電池性能。這項工作為固體電解質(zhì)改性提供了工程解決方案,并為未來海水電池的發(fā)展具有重要意義。





審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • SEM
    SEM
    +關(guān)注

    關(guān)注

    0

    文章

    191

    瀏覽量

    14400
  • 電解質(zhì)
    +關(guān)注

    關(guān)注

    6

    文章

    790

    瀏覽量

    19970
  • 固體電解質(zhì)
    +關(guān)注

    關(guān)注

    0

    文章

    46

    瀏覽量

    8370

原文標(biāo)題:海水電池:固體電解質(zhì)是終極解決方案?

文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    無極電容器有電解質(zhì)嗎,無極電容器電解質(zhì)怎么測

    無極電容器通常存在電解質(zhì)。電解質(zhì)在無極電容器中起著重要作用,它可以增加電容器的電容量和穩(wěn)定性。然而,電解質(zhì)也可能帶來一些問題,如漏電和壽命問題。
    的頭像 發(fā)表于 10-01 16:45 ?191次閱讀

    固態(tài)電池的概念_固態(tài)電池的發(fā)展趨勢

    固態(tài)電池是一種使用固體電極和固體電解質(zhì)電池,其內(nèi)部完全沒有液體的存在,由無機物或有機高分子固體
    的頭像 發(fā)表于 09-15 11:57 ?487次閱讀

    氧化物布局格局一覽 氧化物電解質(zhì)何以撐起全固態(tài)?

    今年以來,各式各樣的半固態(tài)、全固態(tài)電池開始愈發(fā)頻繁且高調(diào)地現(xiàn)身,而背后均有氧化物電解質(zhì)的身影。
    的頭像 發(fā)表于 05-16 17:41 ?811次閱讀

    鈮酸鋰調(diào)控固態(tài)電解質(zhì)電場結(jié)構(gòu)促進鋰離子高效傳輸!

    聚合物基固態(tài)電解質(zhì)得益于其易加工性,最有希望應(yīng)用于下一代固態(tài)鋰金屬電池。
    的頭像 發(fā)表于 05-09 10:37 ?455次閱讀
    鈮酸鋰調(diào)控固態(tài)<b class='flag-5'>電解質(zhì)</b>電場結(jié)構(gòu)促進鋰離子高效傳輸!

    電解質(zhì)電極信號采集控制板

    1、產(chǎn)品介紹: 本產(chǎn)品是測量分析人體的血清或者尿液中K,NA CL CA PH LI CL CO2 等離子的濃度含量。 2、應(yīng)用場景: 電解質(zhì)分析儀。 3、產(chǎn)品概述: 主控芯片
    的頭像 發(fā)表于 04-11 09:07 ?349次閱讀
    <b class='flag-5'>電解質(zhì)</b>電極信號采集控制板

    請問聚合物電解質(zhì)是如何進行離子傳導(dǎo)的呢?

    在目前的聚合物電解質(zhì)體系中,高分子聚合物在室溫下都有明顯的結(jié)晶性,這也是室溫下固態(tài)聚合物電解質(zhì)的電導(dǎo)率遠遠低于液態(tài)電解質(zhì)的原因。
    的頭像 發(fā)表于 03-15 14:11 ?855次閱讀
    請問聚合物<b class='flag-5'>電解質(zhì)</b>是如何進行離子傳導(dǎo)的呢?

    不同類型的電池電解質(zhì)都是什么?

    電解質(zhì)通過促進離子在充電時從陰極到陽極的移動以及在放電時反向的移動,充當(dāng)使電池導(dǎo)電的催化劑。離子是失去或獲得電子的帶電原子,電池電解質(zhì)由液體,膠凝和干燥形式的可溶性鹽,酸或其他堿組成
    的頭像 發(fā)表于 02-27 17:42 ?1187次閱讀

    新型固體電解質(zhì)材料可提高電池安全性和能量容量

    利物浦大學(xué)的研究人員公布了一種新型固體電解質(zhì)材料,這種材料能夠以與液體電解質(zhì)相同的速度傳導(dǎo)鋰離子,這是一項可能重塑電池技術(shù)格局的重大突破。
    的頭像 發(fā)表于 02-19 16:16 ?770次閱讀

    固態(tài)電解質(zhì)離子傳輸機理解析

    固態(tài)電解質(zhì)中離子的遷移通常是通過離子擴散的方式實現(xiàn)的。離子擴散是指離子從一個位置移動到另一個位置的過程,使得電荷在材料中傳輸。
    發(fā)表于 01-19 15:12 ?2004次閱讀
    固態(tài)<b class='flag-5'>電解質(zhì)</b>離子傳輸機理解析

    關(guān)于固態(tài)電解質(zhì)的基礎(chǔ)知識

    固態(tài)電解質(zhì)在室溫條件下要求具有良好的離子電導(dǎo)率,目前所采用的簡單有效的方法是元素替換和元素摻雜。
    的頭像 發(fā)表于 01-19 14:58 ?1.6w次閱讀
    關(guān)于固態(tài)<b class='flag-5'>電解質(zhì)</b>的基礎(chǔ)知識

    淺談固態(tài)電池原材料及技術(shù)難點

    固態(tài)電池與目前主流的傳統(tǒng)鋰離子電池最大的不同在于電解質(zhì)。固態(tài)電池則是使用固體電解質(zhì),替代了傳統(tǒng)鋰
    發(fā)表于 01-19 14:49 ?4w次閱讀
    淺談固態(tài)<b class='flag-5'>電池</b>原材料及技術(shù)難點

    分子篩電解質(zhì)膜助力超長壽命鋅離子電池

    水系鋅離子電池(AZIBs)具有成本低、不易燃燒的鋅金屬和水電解質(zhì)等優(yōu)點。
    的頭像 發(fā)表于 12-21 09:27 ?478次閱讀
    分子篩<b class='flag-5'>電解質(zhì)</b>膜助力超長壽命鋅離子<b class='flag-5'>電池</b>

    低品位海水電解的最新研究進展

    在堿性介質(zhì)中,通過CER形成次氯酸鹽的過電位值小于0.480 V,可避免選擇性O(shè)ER,而在酸性介質(zhì)有利于OER。因此,擴大OER和CER之間的工作電位差對于避免海水電解過程中產(chǎn)生腐蝕性和毒性鹵化物至關(guān)重要。
    的頭像 發(fā)表于 11-25 10:00 ?746次閱讀
    低品位<b class='flag-5'>海水電解</b>的最新研究進展

    離子-偶極作用誘導(dǎo)實現(xiàn)PVDF電解質(zhì)游離殘留溶劑封裝

    由于高離子導(dǎo)電性和機械強度,聚(氟乙烯)(PVDF)電解質(zhì)越來越受到固態(tài)鋰電池的關(guān)注,但高活性殘留溶劑嚴重困擾著循環(huán)穩(wěn)定性。
    的頭像 發(fā)表于 11-21 10:09 ?1842次閱讀
    離子-偶極作用誘導(dǎo)實現(xiàn)PVDF<b class='flag-5'>電解質(zhì)</b>游離殘留溶劑封裝

    鋰離子電池電解液的概念、組成及作用

    從兒童玩具到無繩電動工具,再到電動汽車,由鋰離子電池供電的產(chǎn)品,包括 三元鋰電池 ,在我們的日常生活中正變得越來越普遍。電池電解液被認為是最重要的組成部分之一。根據(jù)
    的頭像 發(fā)表于 11-10 10:00 ?3898次閱讀