0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

石墨文檔Websocket百萬長連接技術實踐

jf_ro2CN3Fa ? 來源:芋道源碼 ? 2023-07-19 14:45 ? 次閱讀

1 引言

在石墨文檔的部分業(yè)務中,例如文檔分享、評論、幻燈片演示和文檔表格跟隨等場景,涉及到多客戶端數(shù)據(jù)同步和服務端批量數(shù)據(jù)推送的需求,一般的 HTTP 協(xié)議無法滿足服務端主動 Push 數(shù)據(jù)的場景,因此選擇采用 WebSocket 方案進行業(yè)務開發(fā)。

隨著石墨文檔業(yè)務發(fā)展,目前日連接峰值已達百萬量級,日益增長的用戶連接數(shù)和不符合目前量級的架構設計導致了內(nèi)存和 CPU 使用量急劇增長,因此我們考慮對網(wǎng)關進行重構。

基于 Spring Boot + MyBatis Plus + Vue & Element 實現(xiàn)的后臺管理系統(tǒng) + 用戶小程序,支持 RBAC 動態(tài)權限、多租戶、數(shù)據(jù)權限、工作流、三方登錄、支付、短信、商城等功能

  • 項目地址:https://github.com/YunaiV/ruoyi-vue-pro
  • 視頻教程:https://doc.iocoder.cn/video/

2 網(wǎng)關 1.0

網(wǎng)關 1.0 是使用 Node.js 基于 Socket.IO 進行修改開發(fā)的版本,很好的滿足了當時用戶量級下的業(yè)務場景需求。

2.1 架構

網(wǎng)關 1.0 版本架構設計圖:

903ce400-25d4-11ee-962d-dac502259ad0.png

網(wǎng)關 1.0 客戶端連接流程:

  1. 用戶通過 NGINX 連接網(wǎng)關,該操作被業(yè)務服務感知;
  2. 業(yè)務服務感知到用戶連接后,會進行相關用戶數(shù)據(jù)查詢,再將消息 Pub 到 Redis;
  3. 網(wǎng)關服務通過 Redis Sub 收到消息;
  4. 查詢網(wǎng)關集群中的用戶會話數(shù)據(jù),向客戶端進行消息推送。

2.2 痛點

雖然 1.0 版本的網(wǎng)關在線上運行良好,但是不能很好的支持后續(xù)業(yè)務的擴展,并且有以下幾個問題需要解決:

  • 資源消耗:Nginx 僅使用 TLS 解密,請求透傳,產(chǎn)生了大量的資源浪費,同時之前的 Node 網(wǎng)關性能不好,消耗大量的 CPU、內(nèi)存。
  • 維護與觀測:未接入石墨的監(jiān)控體系,無法和現(xiàn)有監(jiān)控告警聯(lián)通,維護上存在一定的困難;
  • 業(yè)務耦合問題:業(yè)務服務與網(wǎng)關功能被集成到了同一個服務中,無法針對業(yè)務部分性能損耗進行針對性水平擴容,為了解決性能問題,以及后續(xù)的模塊擴展能力,都需要進行服務解耦。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 實現(xiàn)的后臺管理系統(tǒng) + 用戶小程序,支持 RBAC 動態(tài)權限、多租戶、數(shù)據(jù)權限、工作流、三方登錄、支付、短信、商城等功能

  • 項目地址:https://github.com/YunaiV/yudao-cloud
  • 視頻教程:https://doc.iocoder.cn/video/

3 網(wǎng)關 2.0

網(wǎng)關 2.0 需要解決很多問題:石墨文檔內(nèi)部有很多組件:文檔、表格、幻燈片和表單等等。在 1.0 版本中組件對網(wǎng)關的業(yè)務調(diào)用可以通過:Redis、Kafka 和 HTTP 接口,來源不可查,管控困難。此外,從性能優(yōu)化的角度考慮也需要對原有服務進行解耦合,將 1.0 版本網(wǎng)關拆分為網(wǎng)關功能部分和業(yè)務處理部分,網(wǎng)關功能部分為 WS-Gateway:集成用戶鑒權、TLS 證書驗證和 WebSocket 連接管理等;業(yè)務處理部分為 WS-API:組件服務直接與該服務進行 gRPC 通信。可針對具體的模塊進行針對性擴容;服務重構加上 Nginx 移除,整體硬件消耗顯著降低;服務整合到石墨監(jiān)控體系。

3.1 整體架構

網(wǎng)關 2.0 版本架構設計圖:

905b88d8-25d4-11ee-962d-dac502259ad0.png

網(wǎng)關 2.0 客戶端連接流程:

  1. 客戶端與 WS-Gateway 服務通過握手流程建立 WebSocket 連接;
  2. 連接建立成功后,WS-Gateway 服務將會話進行節(jié)點存儲,將連接信息映射關系緩存到 Redis 中,并通過 Kafka 向 WS-API 推送客戶端上線消息;
  3. WS-API 通過 Kafka 接收客戶端上線消息及客戶端上行消息;
  4. WS-API 服務預處理及組裝消息,包括從 Redis 獲取消息推送的必要數(shù)據(jù),并進行完成消息推送的過濾邏輯,然后 Pub 消息到 Kafka;
  5. WS-Gateway 通過 Sub Kafka 來獲取服務端需要返回的消息,逐個推送消息至客戶端。

3.2 握手流程

網(wǎng)絡狀態(tài)良好的情況下,完成如下圖所示步驟 1 到步驟 6 之后,直接進入 WebSocket 流程;網(wǎng)絡環(huán)境較差的情況下,WebSocket 的通信模式會退化成 HTTP 方式,客戶端通過 POST 方式推送消息到服務端,再通過 GET 長輪詢的方式從讀取服務端返回數(shù)據(jù)。客戶端初次請求服務端連接建立的握手流程:

9092b524-25d4-11ee-962d-dac502259ad0.png
  1. Client 發(fā)送 GET 請求嘗試建立連接;
  2. Server 返回相關連接數(shù)據(jù),sid 為本次連接產(chǎn)生的唯一 Socket ID,后續(xù)交互作為憑證;

{"sid":"xxx","upgrades":["websocket"],"pingInterval":xxx,"pingTimeout":xxx}

  1. Client 攜帶步驟 2 中的 sid 參數(shù)再次請求;
  2. Server 返回 40,表示請求接收成功;
  3. Client 發(fā)送 POST 請求確認后期降級通路情況;
  4. Server 返回 ok,此時第一階段握手流程完成;
  5. 嘗試發(fā)起 WebSocket 連接,首先進行 2probe 和 3probe 的請求響應,確認通信通道暢通后,即可進行正常的 WebSocket 通信。

3.3 TLS 內(nèi)存消耗優(yōu)化

客戶端與服務端連接建立采用的 wss 協(xié)議,在 1.0 版本中 TLS 證書掛載在 Nginx 上,HTTPS 握手過程由 Nginx 完成,為了降低 Nginx 的機器成本,在 2.0 版本中我們將證書掛載到服務上,通過分析服務內(nèi)存,如下圖所示,TLS 握手過程中消耗的內(nèi)存占了總內(nèi)存消耗的大概 30% 左右。

90b8ed2a-25d4-11ee-962d-dac502259ad0.png

這個部分的內(nèi)存消耗無法避免,我們有兩個選擇:

  • 采用七層負載均衡,在七層負載上進行 TLS 證書掛載,將 TLS 握手過程移交給性能更好的工具完成;
  • 優(yōu)化 Go 對 TLS 握手過程性能,在與業(yè)內(nèi)大佬曹春暉(曹大)的交流中了解到,他最近在 Go 官方庫提交的 PR https://github.com/golang/go/issues/43563 ,以及相關的性能測試數(shù)據(jù) https://github.com/golang/go/pull/48229 。

3.4 Socket ID 設計

對每次連接必須產(chǎn)生一個唯一碼,如果出現(xiàn)重復會導致串號,消息混亂推送的問題。選擇 SnowFlake 算法作為唯一碼生成算法。

物理機場景中,對副本所在物理機進行固定編號,即可保證每個副本上的服務產(chǎn)生的 Socket ID 是唯一值。

K8S 場景中,這種方案不可行,于是采用注冊下發(fā)的方式返回編號,WS-Gateway 所有副本啟動后向數(shù)據(jù)庫寫入服務的啟動信息,獲取副本編號,以此作為參數(shù)作為 SnowFlake 算法的副本編號進行 Socket ID 生產(chǎn),服務重啟會繼承之前已有的副本編號,有新版本下發(fā)時會根據(jù)自增 ID 下發(fā)新的副本編號。于此同時,Ws-Gateway 副本會向數(shù)據(jù)庫寫入心跳信息,以此作為網(wǎng)關服務本身的健康檢查依據(jù)。

3.5 集群會話管理方案:事件廣播

客戶端完成握手流程后,會話數(shù)據(jù)在當前網(wǎng)關節(jié)點內(nèi)存存儲,部分可序列化數(shù)據(jù)存儲到 Redis,存儲結構說明如下:

說明
wsclients:${uid} 存儲用戶和 WebSocket 連接的關系,采用有序集合方式存儲
wsclients:${guid} 存儲文件和 WebSocket 連接的關系,采用有序結合方式存儲
ws${socket.id} 存儲當前 WebSocket 連接下的全部用戶和文件關系數(shù)據(jù),采用 Redis Hash 方式進行存儲,對應 key 為 user 和 guid

由客戶端觸發(fā)或組件服務觸發(fā)的消息推送,通過 Redis 存儲的數(shù)據(jù)結構,在 WS-API 服務查詢到返回消息體的目標客戶端的 Socket ID,再有 WS-Gateway 服務進行集群消費,如果 Socket ID 不在當前節(jié)點,則需要進行節(jié)點與會話關系的查詢,找到客端戶 Socket ID 實際對應的 WS-Gateway 節(jié)點,通常有以下兩種方案:

優(yōu)點 缺點
事件廣播 實現(xiàn)簡單 消息廣播數(shù)量會隨著節(jié)點數(shù)量上升
注冊中心 會話與節(jié)點映射關系清晰 注冊中心強依賴,額外運維成本

在確定使用事件廣播方式進行網(wǎng)關節(jié)點間的消息傳遞后,進一步選擇使用哪種具體的消息中間件,列舉了三種待選的方案:

特性 Redis Kafka RocKetMQ
開發(fā)語言 C Scala Java
單機吞吐量 10w+ 10w+ 10w+
可用性 主從架構 分布式架構 分布式架構
特點 功能簡單 吞吐量、可用性極高 功能豐富、定制化強,吞吐量、可用性高
功能特性 數(shù)據(jù) 10K 以內(nèi)性能優(yōu)異,功能簡單,適用于簡單業(yè)務場景 支持核心的 MQ 功能,不支持消息查詢或消息回溯等功能 支持核心的 MQ 功能,擴展性強

于是對 Redis 和其他 MQ 中間件進行 100w 次的入隊和出隊操作,在測試過程中發(fā)現(xiàn)在數(shù)據(jù)小于 10K 時 Redis 性能表現(xiàn)十分優(yōu)秀,進一步結合實際情況:廣播內(nèi)容的數(shù)據(jù)量大小在 1K 左右,業(yè)務場景簡單固定,并且要兼容歷史業(yè)務邏輯,最后選擇了 Redis 進行消息廣播。

后續(xù)還可以將 WS-API 與 WS-Gateway 兩兩互聯(lián),使用 gRPC stream 雙向流通信節(jié)省內(nèi)網(wǎng)流量。

3.6 心跳機制

會話在節(jié)點內(nèi)存與 Redis 中存儲后,客戶端需要通過心跳上報持續(xù)更新會話時間戳,客戶端按照服務端下發(fā)的周期進行心跳上報,上報時間戳首先在內(nèi)存進行更新,然后再通過另外的周期進行 Redis 同步,避免大量客戶端同時進行心跳上報對 Redis 產(chǎn)生壓力。

  1. 客戶端建立 WebSocket 連接成功后,服務端下發(fā)心跳上報參數(shù);
  2. 客戶端依據(jù)以上參數(shù)進行心跳包傳輸,服務端收到心跳后會更新會話時間戳;
  3. 客戶端其他上行數(shù)據(jù)都會觸發(fā)對應會話時間戳更新;
  4. 服務端定時清理超時會話,執(zhí)行主動關閉流程;
  5. 通過 Redis 更新的時間戳數(shù)據(jù)進行 WebSocket 連接、用戶和文件之間的關系進行清理。會話數(shù)據(jù)內(nèi)存以及 Redis 緩存清理邏輯:
for{
select{
case<-t.C:
????????varnow=time.Now().Unix()
varclients=make([]*Connection,0)
dispatcher.clients.Range(func(_,vinterface{})bool{
client:=v.(*Connection)
lastTs:=atomic.LoadInt64(&client.LastMessageTS)
ifnow-lastTs>int64(expireTime){
clients=append(clients,client)
}else{
dispatcher.clearRedisMapping(client.Id,client.Uid,lastTs,clearTimeout)
}
returntrue
})
for_,cli:=rangeclients{
cli.WsClose()
}
}
}

在已有的兩級緩存刷新機制上,進一步通過動態(tài)心跳上報頻率的方式降低心跳上報產(chǎn)生的服務端性能壓力,默認場景中客戶端對服務端進行間隔 1s 的心跳上報,假設目前單機承載了 50w 的連接數(shù),當前的 QPS 為:QPS1 = 500000/1

從服務端性能優(yōu)化的角度考慮,實現(xiàn)心跳正常情況下的動態(tài)間隔,每 x 次正常心跳上報,心跳間隔增加 a,增加上限為 y,動態(tài) QPS 最小值為:QPS2=500000/y

極限情況下,心跳產(chǎn)生的 QPS 降低 y 倍。在單次心跳超時后服務端立刻將 a 值變?yōu)?1s 進行重試。采用以上策略,在保證連接質(zhì)量的同時,降低心跳對服務端產(chǎn)生的性能損耗。

3.7 自定義 Headers

使用 Kafka 自定義 Headers 的目的是避免網(wǎng)關層出現(xiàn)對消息體解碼而帶來的性能損耗,客戶端 WebSocket 連接建立成功后,會進行一系列的業(yè)務操作,我們選擇將 WS-Gateway 和 WS-API 之間的操作指令和必要的參數(shù)放到 Kafka 的 Headers 中,例如通過 X-XX-Operator 為廣播,再讀取 X-XX-Guid 文件編號,對該文件內(nèi)的所有用戶進行消息推送。

字段 說明 描述
X-ID WebSocket ID 連接 ID
X-Uid 用戶 ID 用戶 ID
X-Guid 文件 ID 文件 ID
X-Inner 網(wǎng)關內(nèi)部操作指令 用戶加入、用戶退出
X-Event 網(wǎng)關事件 Connect/Message/Disconnect
X-Locale 語言類型設置 語言類型設置
X-Operator api 層操作指令 單播、廣播、網(wǎng)關內(nèi)部操作
X-Auth-Type 用戶鑒權類型 SDKV2、主站、微信、移動端、桌面
X-Client-Version 客戶端版本 客戶端版本
X-Server-Version 網(wǎng)關版本 服務端版本
X-Push-Client-ID 客戶端 ID 客戶端 ID
X-Trace-ID 鏈路 ID 鏈路 ID

在 Kafka Headers 中寫入了 trace id 和 時間戳,可以追中某條消息的完整消費鏈路以及各階段的時間消耗。

90ea6882-25d4-11ee-962d-dac502259ad0.png

3.8 消息接收與發(fā)送

typePacketstruct{
...
}

typeConnectstruct{
*websocket.Con
sendchanPacket
}

funcNewConnect(connnet.Conn)*Connect{
c:=&Connect{
send:make(chanPacket,N),
}
goc.reader()
goc.writer()
returnc
}

客戶端與服務端的消息交互第一版的寫法類似以上寫法,對 Demo 進行壓測,發(fā)現(xiàn)每個 WebSocket 連接都會占用 3 個 goroutine,每個 goroutine 都需要內(nèi)存棧,單機承載連十分有限,主要受制于大量的內(nèi)存占用,而且大部分時間 c.writer() 是閑置狀態(tài),于是考慮,是否只啟用 2 個 goroutine 來完成交互。

typePacketstruct{
...
}

typeConnectstruct{
*websocket.Conn
muxsync.RWMutex
}

funcNewConnect(connnet.Conn)*Connect{
c:=&Connect{
send:make(chanPacket,N),
}
goc.reader()
returnc
}

func(c*Connect)Write(data[]byte)(errerror){
c.mux.Lock()
deferc.mux.Unlock()
...
returnnil
}

保留 c.reader() 的 goroutine,如果使用輪詢方式從緩沖區(qū)讀取數(shù)據(jù),可能會產(chǎn)生讀取延遲或者鎖的問題,c.writer() 操作調(diào)整為主動調(diào)用,不采用啟動 goroutine 持續(xù)監(jiān)聽,降低內(nèi)存消耗。

調(diào)研了 gev 和 gnet 等基于事件驅動的輕量級高性能網(wǎng)絡庫,實測發(fā)現(xiàn)在大量連接場景下可能產(chǎn)生的消息延遲的問題,所以沒有在生產(chǎn)環(huán)境下使用。

3.9 核心對象緩存

確定數(shù)據(jù)接收與發(fā)送邏輯后,網(wǎng)關部分的核心對象為 Connection 對象,圍繞 Connection 進行了 run、read、write、close 等函數(shù)的開發(fā)。使用 sync.pool 來緩存該對象,減輕 GC 壓力,創(chuàng)建連接時,通過對象資源池獲取 Connection 對象,生命周期結束之后,重置 Connection 對象后 Put 回資源池。在實際編碼中,建議封裝 GetConn()、PutConn() 函數(shù),收斂數(shù)據(jù)初始化、對象重置等操作。

varConnectionPool=sync.Pool{
New:func()interface{}{
return&Connection{}
},
}

funcGetConn()*Connection{
cli:=ConnectionPool.Get().(*Connection)
returncli
}

funcPutConn(cli*Connection){
cli.Reset()
ConnectionPool.Put(cli)//放回連接池
}

3.10 數(shù)據(jù)傳輸過程優(yōu)化

消息流轉過程中,需要考慮消息體的傳輸效率優(yōu)化,采用 MessagePack 對消息體進行序列化,壓縮消息體大小。調(diào)整 MTU 值避免出現(xiàn)分包情況,定義 a 為探測包大小,通過如下指令,對目標服務 ip 進行 MTU 極限值探測。

ping-s{a}{ip}

a = 1400 時,實際傳輸包大小為:1428。其中 28 由 8(ICMP 回顯請求和回顯應答報文格式)和 20(IP 首部)構成。

91181f3e-25d4-11ee-962d-dac502259ad0.png

如果 a 設置過大會導致應答超時,在實際環(huán)境包大小超過該值時會出現(xiàn)分包的情況。

9139a5c8-25d4-11ee-962d-dac502259ad0.png

在調(diào)試合適的 MTU 值的同時通過 MessagePack 對消息體進行序列號,進一步壓縮數(shù)據(jù)包的大小,并減小 CPU 的消耗。

3.11 基礎設施支持

使用 EGO 框架( https://github.com/gotomicro/ego )進行服務開發(fā):業(yè)務日志打印,異步日志輸出,動態(tài)日志級別調(diào)整等功能,方便線上問題排查提升日志打印效率;微服務監(jiān)控體系,CPU、P99、內(nèi)存、goroutine 等監(jiān)控。

915da32e-25d4-11ee-962d-dac502259ad0.png

客戶端 Redis 監(jiān)控:

918a0892-25d4-11ee-962d-dac502259ad0.png

客戶端 Kafka 監(jiān)控:

91bcdc72-25d4-11ee-962d-dac502259ad0.png

自定義監(jiān)控大盤:

91efffe4-25d4-11ee-962d-dac502259ad0.png

4 性能壓測

4.1 壓測準備

  • 選擇一臺配置為 4 核 8G 的虛擬機,作為服務機,目標承載 48w 連接;
  • 選擇八臺配置為 4 核 8G 的虛擬機,作為客戶機,每臺客戶機開放 6w 個端口。

4.2 場景一

用戶上線,50w 在線用戶。

服務 CPU Memory 數(shù)量 CPU% Mem%
WS-Gateway 16 核 32G 1 臺 22.38% 70.59%

單個 WS-Gateway 每秒建立連接數(shù)峰值為:1.6w 個/s,每個用戶占用內(nèi)存:47K。

4.3 場景二

測試時間 15 分鐘,在線用戶 50w,每 5s 推送一條所有用戶,用戶有回執(zhí)。推送內(nèi)容為:

42["message",{"type":"xx","data":{"type":"xx","clients":[{"id":xx,"name":"xx","email":"xx@xx.xx","avatar":"ZgG5kEjCkT6mZla6.png","created_at":1623811084000,"name_pinyin":"","team_id":13,"team_role":"member","merged_into":0,"team_time":1623811084000,"mobile":"+xxxx","mobile_account":"","status":1,"has_password":true,"team":null,"membership":null,"is_seat":true,"team_role_enum":3,"register_time":1623811084000,"alias":"","type":"anoymous"}],"userCount":1,"from":"ws"}}]

測試經(jīng)過 5 分鐘后,服務異常重啟,重啟原因是內(nèi)存使用量到超過限制。

9224e4a2-25d4-11ee-962d-dac502259ad0.png924acdc0-25d4-11ee-962d-dac502259ad0.png927847fa-25d4-11ee-962d-dac502259ad0.png929eb2dc-25d4-11ee-962d-dac502259ad0.png

分析內(nèi)存超過限制的原因:

92bda3ea-25d4-11ee-962d-dac502259ad0.png

新增的廣播代碼用掉了 9.32% 的內(nèi)存。

92e73052-25d4-11ee-962d-dac502259ad0.png

接收用戶回執(zhí)消息的部分消耗了 10.38% 的內(nèi)存。

932f0dfa-25d4-11ee-962d-dac502259ad0.png

進行測試規(guī)則調(diào)整,測試時間 15 分鐘,在線用戶 48w,每 5s 推送一條所有用戶,用戶有回執(zhí)。推送內(nèi)容為:

42["message",{"type":"xx","data":{"type":"xx","clients":[{"id":xx,"name":"xx","email":"xx@xx.xx","avatar":"ZgG5kEjCkT6mZla6.png","created_at":1623811084000,"name_pinyin":"","team_id":13,"team_role":"member","merged_into":0,"team_time":1623811084000,"mobile":"+xxxx","mobile_account":"","status":1,"has_password":true,"team":null,"membership":null,"is_seat":true,"team_role_enum":3,"register_time":1623811084000,"alias":"","type":"anoymous"}],"userCount":1,"from":"ws"}}]

服務 CPU Memory 數(shù)量 CPU% Mem%
WS-Gateway 16 核 32G 1 臺 44% 91.75%

連接數(shù)建立峰值:1w 個/s,接收數(shù)據(jù)峰值:9.6w 條/s,發(fā)送數(shù)據(jù)峰值 9.6w 條/s。

4.4 場景三

測試時間 15 分鐘,在線用戶 50w,每 5s 推送一條所有用戶,用戶無需回執(zhí)。推送內(nèi)容為:

["message",{"type":"xx","data":{"type":"xx","clients":[{"id":xx,"name":"xx","email":"xx@xx.xx","avatar":"ZgG5kEjCkT6mZla6.png","created_at":1623811084000,"name_pinyin":"","team_id":13,"team_role":"member","merged_into":0,"team_time":1623811084000,"mobile":"+xxxx","mobile_account":"","status":1,"has_password":true,"team":null,"membership":null,"is_seat":true,"team_role_enum":3,"register_time":1623811084000,"alias":"","type":"anoymous"}],"userCount":1,"from":"ws"}}]

服務 CPU Memory CPU% Mem%
WS-Gateway 16 核 32G 1 臺 30% 93%

連接數(shù)建立峰值:1.1w 個/s,發(fā)送數(shù)據(jù)峰值 10w 條/s,出內(nèi)存占用過高之外,其他沒有異常情況。

935145aa-25d4-11ee-962d-dac502259ad0.png936e800c-25d4-11ee-962d-dac502259ad0.png938fd806-25d4-11ee-962d-dac502259ad0.png93b40eba-25d4-11ee-962d-dac502259ad0.png

內(nèi)存消耗極高,分析火焰圖,大部分消耗在定時 5s 進行廣播的操作上。

93d78ed0-25d4-11ee-962d-dac502259ad0.png

4.5 場景四

測試時間 15 分鐘,在線用戶 50w,每 5s 推送一條所有用戶,用戶有回執(zhí)。每秒 4w 用戶上下線。推送內(nèi)容為:

42["message",{"type":"xx","data":{"type":"xx","clients":[{"id":xx,"name":"xx","email":"xx@xx.xx","avatar":"ZgG5kEjCkT6mZla6.png","created_at":1623811084000,"name_pinyin":"","team_id":13,"team_role":"member","merged_into":0,"team_time":1623811084000,"mobile":"+xxxx","mobile_account":"","status":1,"has_password":true,"team":null,"membership":null,"is_seat":true,"team_role_enum":3,"register_time":1623811084000,"alias":"","type":"anoymous"}],"userCount":1,"from":"ws"}}]

服務 CPU Memory 數(shù)量 CPU% Mem%
WS-Gateway 16 核 32G 1 臺 46.96% 65.6%

連接數(shù)建立峰值:18570 個/s,接收數(shù)據(jù)峰值:329949 條/s,發(fā)送數(shù)據(jù)峰值 393542 條/s,未出現(xiàn)異常情況。

9410d5a0-25d4-11ee-962d-dac502259ad0.png943412ae-25d4-11ee-962d-dac502259ad0.png9464fe14-25d4-11ee-962d-dac502259ad0.png949073e6-25d4-11ee-962d-dac502259ad0.png

4.6 壓測總結

在 16C 32G 內(nèi)存的硬件條件下,單機 50w 連接數(shù),進行以上包括用戶上下線、消息回執(zhí)等四個場景的壓測,內(nèi)存和 CPU 消耗都符合預期,并且在較長時間的壓測下,服務也很穩(wěn)定。滿足目前量級下的資源節(jié)約要求,可在此基礎上繼續(xù)完善功能開發(fā)。

5 總結

面臨日益增加的用戶量,網(wǎng)關服務的重構是勢在必行,本次重構主要是:

  • 對網(wǎng)關服務與業(yè)務服務的解耦,移除對 Nginx 的依賴,讓整體架構更加清晰。

  • 從用戶建立連接到底層業(yè)務推送消息的整體流程分析,對其中這些流程進行了具體的優(yōu)化。以下各個方面讓 2.0 版本的網(wǎng)關有了更少的資源消耗,更低的單位用戶內(nèi)存損耗、更加完善的監(jiān)控報警體系,讓網(wǎng)關服務本身更加可靠:

    • 可降級的握手流程;
    • Socket ID 生產(chǎn);
    • 客戶端心跳處理過程的優(yōu)化;
    • 自定義 Headers 避免了消息解碼,強化了鏈路追蹤與監(jiān)控;
    • 消息的接收與發(fā)送代碼結構設計上的優(yōu)化;
    • 對象資源池的使用,使用緩存降低 GC 頻率;
    • 消息體的序列化壓縮;
    • 接入服務觀測基礎設施,保證服務穩(wěn)定性。
  • 在保證網(wǎng)關服務性能過關的同時,更進一步的是收斂底層組件服務對網(wǎng)關業(yè)務調(diào)用的方式,從以前的 HTTP、Redis、Kafka 等方式,統(tǒng)一為 gRPC 調(diào)用,保證了來源可查可控,為后續(xù)業(yè)務接入打下了更好的基礎。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • cpu
    cpu
    +關注

    關注

    68

    文章

    10769

    瀏覽量

    210421
  • 算法
    +關注

    關注

    23

    文章

    4575

    瀏覽量

    92337
  • 網(wǎng)關
    +關注

    關注

    9

    文章

    4180

    瀏覽量

    50765

原文標題:石墨文檔Websocket百萬長連接技術實踐

文章出處:【微信號:芋道源碼,微信公眾號:芋道源碼】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    Django3如何使用WebSocket實現(xiàn)WebShell

    websocket 服務。 大致看了下覺得這不夠有趣,翻了翻 django 的官方文檔發(fā)現(xiàn) django 原生是不支持 websocket 的,但 django3 之后支持了 asgi 協(xié)議可以自己實現(xiàn)
    的頭像 發(fā)表于 11-17 09:58 ?4273次閱讀

    一文詳解WebSocket協(xié)議

    WebSocket出現(xiàn)之前,一個Web應用(即時聊天、多人協(xié)作)的客戶端和服務端之間常見的雙向數(shù)據(jù)交換方式有短輪詢、輪詢、SSE(Server-Sent Events,服務器發(fā)送事件)。這些方式
    的頭像 發(fā)表于 01-07 11:26 ?6870次閱讀
    一文詳解<b class='flag-5'>WebSocket</b>協(xié)議

    鴻蒙原生應用開發(fā)-網(wǎng)絡管理WebSocket連接

    一、場景介紹 使用WebSocket建立服務器與客戶端的雙向連接,需要先通過createWebSocket()方法創(chuàng)建WebSocket對象,然后通過connect()方法連接到服務器
    發(fā)表于 04-07 09:46

    websocket.c RTOS演示中缺少對wifi_connect()的調(diào)用怎么辦?

    _task 的代碼,用于連接到接入點。 但是,它不會調(diào)用 wifi_station_connect(),因此實際上不會連接到接入點。 此外,沒有描述如何實際使用演示的文檔......
    發(fā)表于 07-18 06:37

    如何通過Java來使用WebSocket

    Bozhidar Bozhanov是Ontotext AD的高級軟件工程師,擁有多年的從業(yè)經(jīng)驗,也是stackoverflow上的活躍用戶。他精通于Java與Java技術棧,如Spring、JPA
    發(fā)表于 07-11 07:19

    什么是WebSocket?進行通信解析 WebSocket 報文及實現(xiàn)

    一般情況下全為 0。當客戶端、服務端協(xié)商采用 WebSocket 擴展時,這三個標志位可以非0,且值的含義由擴展進行定義。如果出現(xiàn)非零的值,且并沒有采用 WebSocket 擴展,連接出錯。
    的頭像 發(fā)表于 05-15 16:59 ?9675次閱讀
    什么是<b class='flag-5'>WebSocket</b>?進行通信解析 <b class='flag-5'>WebSocket</b> 報文及實現(xiàn)

    Python如何爬取實時變化的WebSocket數(shù)據(jù)

    Python 中的網(wǎng)絡請求庫非常多,Requests 是最常用的請求庫之一,它可以模擬發(fā)送網(wǎng)絡請求。但是這些請求都是基于 HTTP 協(xié)議的。在面對 WebSocket 的時候 Requests 就發(fā)揮不料作用了,必須使用能夠連接 Web
    的頭像 發(fā)表于 03-11 09:31 ?3502次閱讀
    Python如何爬取實時變化的<b class='flag-5'>WebSocket</b>數(shù)據(jù)

    如何使用SpringBoot集成Netty開發(fā)一個基于WebSocket的聊天室說明

    文檔的主要內(nèi)容詳細介紹的是基于SpringBoot,借助Netty控制鏈接,使用WebSocket協(xié)議做一個實時的聊天室。
    發(fā)表于 05-29 17:56 ?1次下載
    如何使用SpringBoot集成Netty開發(fā)一個基于<b class='flag-5'>WebSocket</b>的聊天室說明

    WebSocket有什么優(yōu)點

    WebSocket是一種在單個TCP連接上進行全雙工通信的協(xié)議。WebSocket通信協(xié)議于2011年被IETF定為標準RFC 6455,并由RFC7936補充規(guī)范。WebSocket
    的頭像 發(fā)表于 02-15 15:53 ?8211次閱讀
    <b class='flag-5'>WebSocket</b>有什么優(yōu)點

    WebSocket工作原理及使用方法

    它有很多名字; WebSocket,WebSocket協(xié)議和WebSocket API。從首選的消息傳遞應用程序到流行的在線多人游戲,WebSocket在當今最常用的Web應用程序中是
    的頭像 發(fā)表于 05-05 22:12 ?7800次閱讀
    <b class='flag-5'>WebSocket</b>工作原理及使用方法

    ESP32 單片機學習筆記 - 08 - WebSocket客戶端

    前言,終于要到網(wǎng)絡模型的最后一層,第四層,應用層,http、websocket實踐了。文章目錄ESP32 單片機學習筆記 - 08 - WebSocket客戶端一、應用層協(xié)議 科普概念二、編程指南
    發(fā)表于 12-29 18:56 ?12次下載
    ESP32 單片機學習筆記 - 08 - <b class='flag-5'>WebSocket</b>客戶端

    通過加密websocket連接到互聯(lián)網(wǎng)

    電子發(fā)燒友網(wǎng)站提供《通過加密websocket連接到互聯(lián)網(wǎng).zip》資料免費下載
    發(fā)表于 12-21 14:19 ?0次下載
    通過加密<b class='flag-5'>websocket</b><b class='flag-5'>連接</b>到互聯(lián)網(wǎng)

    鴻蒙上WebSocket的使用方法

    WebSocket 是一種網(wǎng)絡通訊協(xié)議,很多網(wǎng)絡開發(fā)工作者都需要它。本文介紹在 OpenHarmony 上 WebSocket 協(xié)議的使用方法。
    的頭像 發(fā)表于 03-08 14:17 ?1648次閱讀

    websocket協(xié)議的原理

    定為標準RFC 6455,并被RFC7936所補充規(guī)范。 一、WebSocket簡介 webSocket是什么: 1、WebSocket是一種在單個TCP連接上進行全雙工通信的協(xié)議 2
    的頭像 發(fā)表于 11-09 15:13 ?979次閱讀
    <b class='flag-5'>websocket</b>協(xié)議的原理

    鴻蒙開發(fā)網(wǎng)絡管理:ohos.net.webSocket WebSocket連接

    使用WebSocket建立服務器與客戶端的雙向連接,需要先通過[createWebSocket]方法創(chuàng)建[WebSocket]對象,然后通過[connect]方法連接到服務器。當
    的頭像 發(fā)表于 06-19 17:12 ?367次閱讀
    鴻蒙開發(fā)網(wǎng)絡管理:ohos.net.<b class='flag-5'>webSocket</b> <b class='flag-5'>WebSocket</b><b class='flag-5'>連接</b>