0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

用于高效體外mRNA轉(zhuǎn)錄的具有微纖維通道的微流控生物反應(yīng)器

微流控 ? 來源:EngineeringForLife ? 2023-08-22 16:22 ? 次閱讀

理想的微流控生物反應(yīng)器(MBR)應(yīng)具有高混合效率(ME)、快速混合、易于制造、低成本以及與反應(yīng)物和產(chǎn)物的低相互作用等關(guān)鍵特征。為了解決這些問題,來自韓國天主教大學(xué)的Sung-Wook Choi開發(fā)了一種新型全氟聚醚(PFPE)-MBR,使用一種簡便且經(jīng)濟有效的方法進行連續(xù)體外mRNA轉(zhuǎn)錄(圖1a)。具有兩個混合單元和長大通道的MBR促進引入成分的完全流體混合,從而實現(xiàn)高產(chǎn)率的mRNA合成。同時,研究人員表明該微流控體外轉(zhuǎn)錄是使用微流控混合系統(tǒng)連續(xù)mRNA合成的首次演示。相關(guān)論文以“Microfluidic Bioreactor with Fibrous Micromixers for In Vitro mRNA Transcription”為題于近期發(fā)表在Nano Letters期刊上。

2da15c2a-3e2c-11ee-ac96-dac502259ad0.png

圖1 PDMS微混合器的制造過程示意圖

圖1a顯示了將3個聚二甲基硅氧烷(PDMS)層組裝成微流控裝置。具有入口/出口端口的頂層具有使用3D打印圖案作為模板制備的半圓形大通道(圖1b),中間層有一個由三個混合單元組成的微混合器。使用電紡微纖維盤作為模板制備具有纖維微通道的混合單元,從兩個入口引入的流體在頂層的大通道中相互接觸。隨后,液流經(jīng)過反復(fù)的混合單元和大通道,最終流出至出口。此外,大多數(shù)纖維微通道呈現(xiàn)出隨機彎曲的結(jié)構(gòu),從而產(chǎn)生旋流。此外,在微通道處可以清楚地觀察到許多連接纖維微通道的連接點(圖1c)。

為了評估混合性能,研究人員將含有綠色熒光染料的水溶液和不含熒光染料的水溶液通過每個入口分別引入微混合器,兩股入口流在Y形大通道處合并成一股流,然后引入第一混合單元。在不同流速下在微混合器的入口和每個窗口捕獲熒光顯微鏡圖像。為了進行比較,使用沒有微纖維通道的微流控混合器作為對照。圖2a顯示了對照和不同MBR的每個窗口的代表性熒光顯微鏡圖像和相應(yīng)的橫截面強度分布。與對照不同,隨著所有類型的微混合器中三個混合單元的通過,熒光強度趨于變成半圓形,表明接近完全混合。微纖維通道直徑較大的微混合器表現(xiàn)出更好的混合性能。

2dd51fce-3e2c-11ee-ac96-dac502259ad0.png

圖2 微型混合器的混合效率及其特點

接著,研究人員準(zhǔn)備了一個具有薄中間層(厚度約為34 μm)的微混合器,通過避免明亮的熒光背景,使用熒光顯微鏡監(jiān)測流動行為。圖3a顯示了薄型微混合器中含有綠色熒光染料的水相的延時熒光圖像。從大通道引入的水相在微混合器中沿著纖維微通道分成許多子流。子流在整個微混合器的連接處反復(fù)分裂和交叉(圖3b ~ 3c)。微纖維通道的彎曲結(jié)構(gòu)可以誘導(dǎo)旋流,從而增強ME。除了多重分流/交叉機制外,纖維微通道由于其混沌和隨機的結(jié)構(gòu),促進了混合流在微混合器中的循環(huán)利用,從而提高了ME。綜上所述,優(yōu)異的混合性能可歸因于混沌纖維微通道的獨特幾何形狀和多個連接處。

2e1054f4-3e2c-11ee-ac96-dac502259ad0.png

圖3 微纖維通道的延時熒光顯微鏡圖像

微流控生物反應(yīng)器(MBR)由兩個帶有纖維微通道(混合部分)和一個長宏觀通道(反應(yīng)部分)的混合單元組成用來演示連續(xù)的mRNA IVT。有兩個入口用于引入由IVT成分組成的溶液1和溶液2。溶液1是T7 pol、rNTP和轉(zhuǎn)錄緩沖液的混合物,而溶液2是模板DNA、增強子和轉(zhuǎn)錄緩沖液的混合物(圖4a)。如圖4b所示,模板DNA和mRNA在PDMS基底上的吸附量分別為8.54% ± 1.95%和8.81%± 1.20%。相比之下,PFPE基底上吸收了極少量的模板DNA(0.63% ± 0.42%)和mRNA(0.15% ± 0.11%)。吸附量的差異是由于PDMS的固有疏水性和PFPE材料的低表面能造成的。因此,選擇PFPE作為mRNA IVT的MBR材料。

接著,以0.4 mL/h的總流速,每20 min在出口收集合成產(chǎn)物,然后計算mRNA合成效率。將合成的mRNA量與批量IVT中的合成量進行比較。mRNA合成效率隨著時間的推移而增加,然后達(dá)到接近100%的平臺(圖4d),表明與批量IVT沒有顯著差異。由于反應(yīng)物溶液的量極少,很難將兩種溶液同時引入MBR。初始階段的低合成效率歸因于溶液1和2之間的不平衡。如圖4c所示,較高的流速導(dǎo)致較低的ME值。因此,以總流速的0.4 mL/h和1.6 mL/h評估流速對mRNA合成效率的影響(圖4e)。MBR中的mRNA合成效率接近100%,而對照裝置中的mRNA合成效率僅限于74%。這些結(jié)果表明,快速混合在相同反應(yīng)時間內(nèi)的mRNA合成效率中起著重要作用。

2ec3414a-3e2c-11ee-ac96-dac502259ad0.png

圖4 PFPE-MBR中的連續(xù)體外轉(zhuǎn)錄特性

為了確認(rèn)完整性,使用Agilent 5200片段分析系統(tǒng)對本體和MBR中合成的mRNA進行了分析。本體和MBR中合成的mRNA的電泳圖像和電泳圖顯示,兩mRNA均由1804個核苷酸(nt)組成,表明大小相同(圖5a)。為了驗證mRNA的性能,在完全培養(yǎng)基中用與Lipofectamine復(fù)合的mRNA轉(zhuǎn)染Nor10細(xì)胞(圖5b)。等量mRNA的轉(zhuǎn)染在轉(zhuǎn)染后6小時和24小時產(chǎn)生了相當(dāng)?shù)臒晒馑孛副磉_(dá)水平。這些體外實驗表明,在MBR中合成的mRNA表現(xiàn)出與批量合成的mRNA相當(dāng)?shù)男阅?。對于體內(nèi)熒光素酶表達(dá)測定,將大量合成的熒光素酶mRNA和MBR注射到小鼠耳部皮膚中。與體外轉(zhuǎn)染結(jié)果相似,兩種mRNA的表達(dá)水平?jīng)]有顯著差異(圖5c)。這些結(jié)果證實,MBR中合成的mRNA與明確的批量IVT中合成的mRNA具有相同的特性和功效。

2efef74e-3e2c-11ee-ac96-dac502259ad0.png

圖5 mRNA的完整性測試和性能評估

綜上,該研究提出了使用電紡纖維基質(zhì)作為模板的具有微纖維通道的微流控混合器的簡便制造方法。均勻混合主要取決于引入的流體在整個微混合器的許多連接處的混沌分裂和交叉。即使混合長度較短(4 mm),微混合器16在各種流速下也表現(xiàn)出接近0.9的高ME值。小型微混合器中存在大量連接點是該微混合器設(shè)計的一個關(guān)鍵特征。三個混合單元的通過導(dǎo)致均勻的流體混合,ME值大于0.95。這種方法的主要特點如下:(1)微混合器制造過程簡便;(2)不需要外部能量;(3)在短時間內(nèi)和長度內(nèi)具有高ME值。此外,使用PFPE-MBR和微混合器證明了mRNA的連續(xù)生產(chǎn)具有高產(chǎn)量。PFPE-MBR具有優(yōu)異的混合性能以及對反應(yīng)物和產(chǎn)物的惰性,可以成為各種化學(xué)和生物反應(yīng)的平臺。





審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 緩沖器
    +關(guān)注

    關(guān)注

    6

    文章

    1905

    瀏覽量

    45396
  • 反應(yīng)器
    +關(guān)注

    關(guān)注

    2

    文章

    91

    瀏覽量

    11003
  • 3D打印技術(shù)
    +關(guān)注

    關(guān)注

    4

    文章

    219

    瀏覽量

    31845
  • 微流控系統(tǒng)
    +關(guān)注

    關(guān)注

    1

    文章

    60

    瀏覽量

    1844
  • 微流控器件
    +關(guān)注

    關(guān)注

    0

    文章

    28

    瀏覽量

    3158

原文標(biāo)題:具有微纖維通道的微流控生物反應(yīng)器,用于高效體外mRNA轉(zhuǎn)錄

文章出處:【微信號:Micro-Fluidics,微信公眾號:微流控】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    反應(yīng)器的特點

    雷諾數(shù)的特點,屬于層流流動。這種流動狀態(tài)有助于實現(xiàn)高效的混合和傳質(zhì)。 2. 高比表面積 反應(yīng)器通道尺寸小,導(dǎo)致其
    的頭像 發(fā)表于 10-21 15:07 ?50次閱讀

    反應(yīng)器介紹

    一、 反應(yīng)器 的定義 反應(yīng)器,即通道反應(yīng)器,是
    的頭像 發(fā)表于 09-30 11:33 ?146次閱讀

    COC/COP控芯片開發(fā)與應(yīng)用

    控技術(shù)是新一代醫(yī)療診斷顛覆性技術(shù),控芯片是指采用微細(xì)加工技術(shù),將通道網(wǎng)絡(luò)結(jié)構(gòu)及其他功能
    的頭像 發(fā)表于 09-24 14:52 ?129次閱讀

    控芯片3大制作技術(shù)

    ,同時保持反應(yīng)體系的封閉性,減少污染,等等。流體作為控技術(shù)操控的對象,可以廣泛涵蓋血液,尿液,唾液等各種生物樣本,因此在
    的頭像 發(fā)表于 08-29 14:44 ?270次閱讀

    反應(yīng)器的工藝過程及優(yōu)勢

    反應(yīng)器采用加工制造技術(shù),設(shè)計通道尺度在10μm~3mm范圍的流動化學(xué)反應(yīng)器。由于
    的頭像 發(fā)表于 08-21 15:02 ?194次閱讀

    通道反應(yīng)器目前的局限性

    ,可以實現(xiàn)物料的瞬間均勻混合和高效的傳熱,因此許多在常規(guī)反應(yīng)器中無法實現(xiàn)的反應(yīng)都可以反應(yīng)器中實現(xiàn)。 從結(jié)構(gòu)特點上來說,目前
    的頭像 發(fā)表于 08-12 14:23 ?145次閱讀

    玻璃控芯片前景分析

    們設(shè)計為允許在芯片內(nèi)發(fā)生各種化學(xué)和生物反應(yīng)控芯片可用于化學(xué)合成、藥物發(fā)現(xiàn)、DNA 分析和即時診斷等廣泛應(yīng)用。 玻璃因其光學(xué)透明性、化
    的頭像 發(fā)表于 07-21 15:05 ?338次閱讀
    玻璃<b class='flag-5'>微</b><b class='flag-5'>流</b>控芯片前景分析

    生物反應(yīng)器半導(dǎo)體制冷溫控方案

    。半導(dǎo)體制冷模組在生物反應(yīng)器溫控系統(tǒng)中的應(yīng)用具有許多優(yōu)勢,尤其適用于小型生物反應(yīng)器、微生物反應(yīng)器和實驗室設(shè)備以及有精密溫控需求的場合。高精度
    的頭像 發(fā)表于 06-21 16:28 ?247次閱讀
    <b class='flag-5'>生物反應(yīng)器</b>半導(dǎo)體制冷溫控方案

    控芯片技術(shù)的特點 控芯片與生物芯片的區(qū)別

    比如對于控免疫分析芯片系統(tǒng),抗體的固定、對通道表面的封閉,顯著影響免疫分析的靈敏度,是該類芯片需要重點解決的問題。
    的頭像 發(fā)表于 03-15 10:36 ?2218次閱讀
    <b class='flag-5'>微</b><b class='flag-5'>流</b>控芯片技術(shù)的特點 <b class='flag-5'>微</b><b class='flag-5'>流</b>控芯片與<b class='flag-5'>生物</b>芯片的區(qū)別

    安泰ATA-7050高壓放大器在控細(xì)胞分選中的應(yīng)用

    設(shè)計具有特定尺寸和性質(zhì)的通道網(wǎng)絡(luò),可實現(xiàn)對細(xì)胞的高效分選與分離。那么高壓放大器在該實驗系統(tǒng)中有何作用呢?我們一起來看看吧~
    的頭像 發(fā)表于 03-01 16:56 ?353次閱讀
    安泰ATA-7050高壓放大器在<b class='flag-5'>微</b><b class='flag-5'>流</b>控細(xì)胞分選中的應(yīng)用

    淺談控芯片技術(shù)

    控技術(shù)(Micronuidics),或稱為芯片實驗室(1ab.on.a(chǎn).chip),是把生物、化學(xué)等領(lǐng)域中樣品的制備、反應(yīng)、分離、檢測等基本操作集成在一塊芯片上,在
    的頭像 發(fā)表于 03-01 09:13 ?3925次閱讀
    淺談<b class='flag-5'>微</b><b class='flag-5'>流</b>控芯片技術(shù)

    優(yōu)可測推動控技術(shù)革新,精準(zhǔn)助力生物醫(yī)學(xué)等行業(yè)的發(fā)展

    控芯片憑借著集成小型化與自動化、污染少、樣本量少、檢測試劑消耗少、高通量等特點,在生物醫(yī)學(xué)、化學(xué)、材料科學(xué)等領(lǐng)域具有廣泛的應(yīng)用前景,其中,
    的頭像 發(fā)表于 01-19 08:32 ?535次閱讀
    優(yōu)可測推動<b class='flag-5'>微</b><b class='flag-5'>流</b>控技術(shù)革新,精準(zhǔn)助力<b class='flag-5'>生物</b>醫(yī)學(xué)等行業(yè)的發(fā)展

    基于液滴流體的控芯片系統(tǒng)的研究

     控芯片系統(tǒng) (Microfluidics) 或控芯片實驗室,是將化學(xué)和生物等領(lǐng)域中所涉及的樣品制備、
    的頭像 發(fā)表于 11-21 16:30 ?637次閱讀

    控紡絲化學(xué)綜述與展望

    控技術(shù)是一項能夠?qū)?b class='flag-5'>微通道中的流體進行精確和系統(tǒng)操縱的先進技術(shù)。該技術(shù)能夠在平臺上靈活組合多功能組件,在
    的頭像 發(fā)表于 11-19 16:05 ?928次閱讀
    <b class='flag-5'>微</b><b class='flag-5'>流</b>控紡絲化學(xué)綜述與展望

    半導(dǎo)體制冷技術(shù)在生物反應(yīng)器中的應(yīng)用優(yōu)勢

    操作平臺以及各類檢測分析儀器,實現(xiàn)樣品及試劑的高效準(zhǔn)確處理。半導(dǎo)體制冷組件在平行生物反應(yīng)器中的應(yīng)用優(yōu)勢:可為每個獨立的小體積反應(yīng)槽提供精確、穩(wěn)定的溫度,保證反應(yīng)
    的頭像 發(fā)表于 11-13 14:34 ?320次閱讀
    半導(dǎo)體制冷技術(shù)在<b class='flag-5'>生物反應(yīng)器</b>中的應(yīng)用優(yōu)勢