0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于有限元模型的IC 卡芯片受力分析研究

半導(dǎo)體封裝工程師之家 ? 來源:半導(dǎo)體封裝工程師之家 ? 作者:半導(dǎo)體封裝工程師 ? 2024-02-25 17:10 ? 次閱讀

共讀好書

吳彩峰 王修壘 謝立松

北京中電華大電子設(shè)計有限責(zé)任公司,射頻識別芯片檢測技術(shù)北京市重點實驗室

摘要:

智能卡三輪測試中,失效表現(xiàn)為芯片受損,本文基于有限元模型來研究智能 IC 卡(Integrated circuit card)芯片受力分析與強度提升方法,針對其結(jié)構(gòu)尺寸參數(shù)變化時對芯片的機械強度影響做了相關(guān)有限元仿真,分析芯片的受力情況,從芯片大小、芯片厚度、芯片偏轉(zhuǎn)角度、EMC 層厚度、PVC 厚度、Lead frame 厚度、芯片粘接膠厚七個因素,對比了 IC 卡單因素尺寸參數(shù)變化對芯片應(yīng)力的影響,并依據(jù)正交設(shè)計表分析 IC 卡的七個因素的參數(shù)變化時芯片的受力情況,得到 EMC 層厚度、Lead frame 和PVC 卡片厚度的變化對芯片承受的最大應(yīng)力影響顯著,且隨著這三個部件厚度的增加芯片所受最大應(yīng)力減小的結(jié)論,為有效提升 IC 卡芯片的機械強度提供了方法。

0 引言

《GB/T 17554.3-2006 識別卡測試方法第三部分帶觸點的集成電路卡及其相關(guān)接口設(shè)備》標(biāo)準(zhǔn)規(guī)定需要對 IC 卡(Integrated Circuit Card,集成電路卡)的機械強度進行測試 [1] 。

該標(biāo)準(zhǔn)規(guī)定,芯片面積大于 4mm 2 時,機械強度測試方法為進行三輪測試,而小于 4mm 2 時的測試方法為點壓力測試。IC 卡卡片的實際生產(chǎn)控制中,無論芯片面積是否小于 4mm 2 ,卡片生產(chǎn)使用相關(guān)環(huán)節(jié)均安排進行三輪測試。

三輪測試的嚴(yán)重失效一般是在壓力作用下,IC卡中封裝的芯片出現(xiàn)物理損傷。芯片承受的強度與IC 卡的各部件的物理規(guī)格有關(guān),如芯片的大小、芯片厚度和封裝時芯片的偏轉(zhuǎn)角度等。在進行受力仿真過程中首先找到芯片在三輪測試過程中受力最大的危險位置,根據(jù)該位置分析 IC 卡各部件尺寸參數(shù)變化時芯片受力情況,并分析 IC 卡各部件的單因素尺寸參數(shù)變化對芯片應(yīng)力的影響。本次仿真分析基于正交試驗,共設(shè)計了 18 組試驗。

本次 仿真 通過 ABAQUS 仿 真 軟 件 完 成 ,ABAQUS 是一款有限元分析軟件,具備強大的分析能力和模擬復(fù)雜系統(tǒng)的可靠性。軟件包括豐富的、可模擬任意幾何形狀的單元庫,并擁有各種類型的材料模型庫。在復(fù)雜的固體力學(xué)結(jié)構(gòu)力學(xué)系統(tǒng)中,能駕馭非常龐大復(fù)雜的問題和模擬高度非線性問題,本次仿真中涉及到了多部件的靜態(tài)應(yīng)力、位移分析和動態(tài)分析,涵蓋了接觸和幾何兩大非線性問題。ABAQUS 仿真軟件可以實現(xiàn)多部件的快速建模并且求解的收斂性可以得到保障。

1 IC 卡有限元模型

1.1 IC 卡結(jié)構(gòu)

IC 卡由芯片封裝體(行業(yè)中常稱作“模塊”)和PVC 卡片組成,芯片封裝體包括芯片、Lead frame、鍵合線、芯片粘接層、EMC 層(注塑膠,多為環(huán)氧塑封料)等組成,芯片封裝體和 PVC 卡片空腔部分進行裝配組成 IC 卡[2] ,IC 卡實物圖如圖 1 所示、IC 卡結(jié)構(gòu)示意圖見圖 2。

a8bc47d2-cf89-11ee-b759-92fbcf53809c.png

a8cd2d2c-cf89-11ee-b759-92fbcf53809c.png

1.2 IC 卡的材料力學(xué)參數(shù)

表 1 為 IC 卡所用到的不同材料的力學(xué)參數(shù)。三輪測試用的輪子的彈性模量為 210 GPa,泊松比為 0.31。

a8df678a-cf89-11ee-b759-92fbcf53809c.png

1.3 IC 卡有限元模型

IC 卡實際模型較為復(fù)雜,模型各部件存在尺寸跨度大的問題,若按照 IC 卡實物圖進行有限元建模,建模難度大,因此對模型進行了相應(yīng)的簡化和等效。首先 IC 卡的各部件除了 EMC 層外,其他部件可以看作是薄板,實際情況中 EMC 層類似水滴型,這種形狀在建模時難度較大,因此等效為矩形。IC 卡中的鍵合線因直徑只有 25μm 或更細(xì),建模時特意進行了忽略。最終建立 IC 卡有限元模型如圖 3。

a8ede53a-cf89-11ee-b759-92fbcf53809c.png

1.4 模型網(wǎng)格劃分及網(wǎng)格收斂性驗證

因 IC 卡有限元模型涉及部件較多,有些部件不是主要關(guān)注部件,例如 PVC 卡片遠離芯片的部分。因此對 PVC 卡片進行分區(qū)劃分時,每個區(qū)域網(wǎng)格布種數(shù)量不一致。PVC 空腔部分要與 Lead frame和封裝后芯片的膠體層接觸,接觸部分網(wǎng)格布種數(shù)量與 Lead frame 的網(wǎng)格布種數(shù)量一致,以保證在有限元仿真過程中應(yīng)力和位移在接觸面上很好地傳遞,使結(jié)果更加準(zhǔn)確;對于主要關(guān)注部件——— 芯片,網(wǎng)格布種數(shù)量相應(yīng)加密,芯片粘接層與芯片、Lead frame(含銅基材、環(huán)氧材料、粘接劑)的網(wǎng)格布種數(shù)量一致 [3] 。

對模型進行網(wǎng)格收斂性驗證,選出合適的網(wǎng)格數(shù)量進行劃分。網(wǎng)格收斂性計算通過改變芯片、Lead frame 等各個部件的網(wǎng)格布種數(shù)量,查看芯片應(yīng)力變化,當(dāng)網(wǎng)格數(shù)量和計算時長適中且計算結(jié)果沒有太大改變時,該網(wǎng)格數(shù)量即為仿真時所適用的數(shù)量。表 2 為網(wǎng)格收斂性驗證對比表。

a8fd3922-cf89-11ee-b759-92fbcf53809c.png

根據(jù)表中數(shù)據(jù)最終選擇的有限元網(wǎng)格模型包括217319 個單元、283271 個節(jié)點。圖 4 是有限元模型網(wǎng)格劃分示意圖。

a90de47a-cf89-11ee-b759-92fbcf53809c.png

2 基于動力學(xué)的三輪測試仿真結(jié)果分析

2.1 動力學(xué)仿真參數(shù)設(shè)置

根據(jù)《GB/T 17554.3-2006 識別卡測試方法第三部分帶觸點的集成電路卡及其相關(guān)接口設(shè)備》,三輪測試 IC 卡機械強度要求設(shè)置動力學(xué)仿真所需參數(shù),包括 IC 卡插入速度、IC 卡插入初始位置和終止位置的確定等。以下是 IC 卡三輪測試操作要求:

(1)將帶有芯片的卡片放在機器測試滾輪之間,將芯片在三個鋼制滾輪間循環(huán)滾動;

(2)芯片面向上時,滾動 50 次;

(3)芯片面向下時滾動 50 次,循環(huán)頻率均為0.5 Hz;

(4)卡片滾動時芯片上需加一定重量的力,經(jīng)過往復(fù)循環(huán)測試后驗證卡片中的芯片功能是否正常。標(biāo)準(zhǔn)中規(guī)定所加的力是 8 N,實際測試時可以進行 8N、12N、15N 等強度的測試。

圖 5 為 IC 卡插入初始位置和終止位置示意圖。

a9286ad4-cf89-11ee-b759-92fbcf53809c.png

從圖 5 中可以看出,三個測試滾輪的直徑為10mm,測試過程中滾輪厚度方向中心線與 IC 卡Lead frame 中心線保持一致,IC 卡插入初始位置上側(cè)滾輪垂直方向中心線與 IC 卡一側(cè)邊緣相距0.1mm,最終插入 40mm,由插入距離和三輪測試循環(huán)頻率可以算出 IC 卡插入速度為 40mm/s,測試過程中上側(cè)滾輪對 IC 卡施加垂直向下 8N 的力。IC 卡的一端受三輪測試儀夾持裝置的夾持進行插拔測試,這也是仿真過程中對 IC 卡施加的邊界條件。

2.2 動力學(xué)仿真及危險位置確定

整體仿真思路:將 IC 卡金屬面向上和金屬面向下的測試過程進行動力學(xué)仿真,提取 IC 卡和芯片動態(tài)應(yīng)力云圖,找到芯片應(yīng)力最大位置,將該位置視為危險位置,對危險位置進行重新建模,通過靜力學(xué)仿真對比不同工況下芯片的受力情況。通過動力學(xué)仿真找到的兩組危險位置如圖 6 和圖 7 所示:

a9388b08-cf89-11ee-b759-92fbcf53809c.png

a94fd560-cf89-11ee-b759-92fbcf53809c.png

表 3 展示了金屬面向上,IC 卡插入 0.375s 處芯片受力更大,將此位置確定為危險位置,基于動力學(xué)仿真的結(jié)果,對卡插入 0.375s 時刻的位置建模,進行后續(xù)的多因素仿真分析。

a97794c4-cf89-11ee-b759-92fbcf53809c.png

3 基于靜力學(xué)的IC 卡多因素仿真結(jié)果分析

3.1 仿真中考慮的設(shè)計因素及設(shè)計水平

考慮多因素對芯片應(yīng)力的影響時選用正交設(shè)計法,原理是根據(jù)正交性從全面試驗中挑選出部分有代表性的點進行試驗,這些有代表性的點具備均勻分散、齊整可比的特點,最后可以用極差分析方法對結(jié)果進行處理,得到各因素的影響主次關(guān)系。

本次正交設(shè)計考慮的有七個因素,包括芯片大?。▎挝?mm,記為因素①)、芯片厚度(單位μm,記為因素②)、芯片偏轉(zhuǎn)角度(單位。 ,記為因素③)、芯片粘接膠厚度(單位μm,記為因素④)、EMC 層厚度(單位μm,記為因素⑤)、PVC 厚度(單位μm,記為因素⑥)、Lead frame(常稱作“條帶”,單位 μm,記為因素⑦)等,每個因素選取三個水平,每個水平的取值情況見表 4,各個取值是結(jié)合實際產(chǎn)品規(guī)格及生產(chǎn)經(jīng)驗獲得。

a98e084e-cf89-11ee-b759-92fbcf53809c.png

查詢正交設(shè)計表格,本次選擇的是一個 18 次的正交試驗。

因智能卡應(yīng)用廣泛,如銀行卡、電信卡、社保卡等,以及各個企業(yè)對質(zhì)量管控的差異,實際確定產(chǎn)品質(zhì)量時,經(jīng)常進行不同工況下的試驗。因此我們對每組試驗安排了 3 個工況下的靜力學(xué)仿真:上側(cè)滾輪施加 8N、12N 和 15N 的工況,累積共進行 54 次仿真運算。通過后處理提取芯片應(yīng)力云圖,并找到芯片上所受最大應(yīng)力,記錄在表 5 中,并對結(jié)果進行極差分析,以上側(cè)滾輪施加 8N 的力為例進行分析,找到各因素的影響主次關(guān)系。

a99d2b8a-cf89-11ee-b759-92fbcf53809c.png

以上側(cè)滾輪施加的不同機械測試強度計算各因素的每一個測試強度的應(yīng)力總和 K(每因素的水平1、水平 2、水平 3,分別記為 K1、K2、K3)、計算各因素不同水平下的每一個測試強度平均應(yīng)力 k(每因素的水平 1、水平 2、水平 3,分別記為 k1、k2、k3)、計算各因素不同水平下的的每一個測試強度平均應(yīng)力的極差 R(R= max {k1,k2,k3}-min{k1,k2,k3})。依據(jù)R 值的大小關(guān)系,判斷各因素對機械強度的影響程度。判斷規(guī)則為 R 值越大,影響程度越大。K、k、R 計算結(jié)果如表 6。

a9b754ec-cf89-11ee-b759-92fbcf53809c.png

對 8N、12N、15N 分別計算 R 值,結(jié)果如圖 8所示:

a9c886ea-cf89-11ee-b759-92fbcf53809c.png

綜合 8N、12N 和 15N 的分析結(jié)果可以看出,EMC層、PVC 卡片和 Lead frame 厚度的變化對芯片應(yīng)力的影響較大,而芯片粘結(jié)層厚度的變化對芯片應(yīng)力無較大影響。隨著上側(cè)滾輪施加力的增大,芯片上所受的應(yīng)力也呈增大的趨勢,但是上側(cè)滾輪施加不同大小的力時,各個因素對芯片所受最大應(yīng)力的影響趨勢相同,通過 k 查看各因素對芯片最大應(yīng)力的影響趨勢,如圖 9 所示,限于篇幅,圖 9 只列出 EMC層、PVC 卡片和 Lead frame 厚度三個因素的趨勢。

a9e0172e-cf89-11ee-b759-92fbcf53809c.png

由圖 9 可以看到,芯片最大應(yīng)力隨 EMC 層、PVC 卡片和 Lead frame 厚度的增加而減小。圖 9 未展示的因素情況為:芯片最大應(yīng)力隨芯片偏轉(zhuǎn)角度的增加先減小后增大,隨芯片大小、芯片粘結(jié)層和芯片厚度的增加而增大。

3.2 芯片有關(guān)因素最大應(yīng)力的影響分析

因為當(dāng)前芯片的工藝技術(shù)、芯片的尺寸等更新迭代較快,而智能卡所用的封裝材料幾乎沒有迭代。為了給予實際生產(chǎn)更多指導(dǎo)意義,特對芯片的應(yīng)力情況單獨進行了如下幾個方面的分析。

3.2.1 芯片厚度對芯片最大應(yīng)力的影響趨勢分析

之前仿真分析時變化芯片厚度保持 EMC 層總厚度不變,如圖 10 所示,考慮到 EMC 層和芯片的厚度變化可能存在交互作用,因此采用經(jīng)典層合板理論并做了兩組對比仿真,即固定 EMC 3 厚度 T 3 和固定 EMC 層總厚度 T 總 ,變化芯片厚度查看芯片所受最大應(yīng)力的變化趨勢。

a9f2df26-cf89-11ee-b759-92fbcf53809c.png

固定 EMC 層總厚度(T 總 )時,仿真得到了三組芯片不同厚度時芯片的最大應(yīng)力。

固定膠體上 EMC 3 層總厚度時,仿真得到了三組芯片不同厚度時芯片的最大應(yīng)力。

以上數(shù)據(jù)記錄如表 7 所示。

aa000b06-cf89-11ee-b759-92fbcf53809c.png

由表 7 可以看到,固定 EMC 層總厚度時,芯片最大應(yīng)力隨芯片厚度增加而增大,當(dāng)固定 EMC 3 層厚度時,芯片最大應(yīng)力隨芯片厚度增加而減小。

3.2.2 不同工況下芯片的受力分析

在仿真軟件中,查看不同工況下芯片應(yīng)力云圖,發(fā)現(xiàn)當(dāng)上側(cè)滾輪施加的力增大時,芯片所受應(yīng)力整體呈現(xiàn)增加趨勢,但是應(yīng)力分布趨勢相同,具體受力情況讀者可以參考表 5 進行分析。

在仿真軟件中,對比所有試驗組的芯片應(yīng)力云圖,發(fā)現(xiàn)芯片受力較大的面是與 EMC 層接觸的面,且芯片所受最大應(yīng)力處于該面或者該面的邊角處。

3.2.3 不同偏轉(zhuǎn)角度時芯片的受力分析

選取芯片大小 3mm×2.3mm,在仿真軟件中,對比不同偏轉(zhuǎn)角度時芯片的應(yīng)力云圖,發(fā)現(xiàn)芯片所受最大應(yīng)力先減小后增大。芯片旋轉(zhuǎn)到 45。 時,芯片所受應(yīng)力最小。

3.2.4 芯片不同大小時芯片應(yīng)力分布情況

選取偏轉(zhuǎn)角度為 0。 ,在仿真軟件中,對比芯片不同大小時芯片的應(yīng)力云圖,發(fā)現(xiàn)應(yīng)力在芯片表面的分布情況不受芯片大小的影響。

4 結(jié)論

通過以上分析,可取得以下結(jié)論及 IC 卡集成電路芯片機械強度提升方法:

(1)EMC 層、Lead frame 和 PVC 卡片厚度的變化對芯片最大應(yīng)力影響顯著,且隨著這三個部件厚度的增加芯片所受最大應(yīng)力減小,芯片粘結(jié)層厚度變化對芯片最大應(yīng)力無較大影響。因此增加 PVC 厚度、EMC 層厚度、Lead frame 的厚度可以提升智能卡機械強度的表現(xiàn)。特別是 EMC 層厚度,在封裝條件允許的情況下,應(yīng)采取較大的 EMC 層厚度值。

(2)芯片與 EMC 層接觸的面是芯片受力較大的面,且芯片所受最大應(yīng)力在該面或該面的邊角處。推測對芯片表面進行適當(dāng)?shù)母纳?,也是提升智能卡機械強度表現(xiàn)的方法。

(3)芯片大小相同時對芯片進行偏轉(zhuǎn),芯片所受最大應(yīng)力先減小后增大,且芯片受力較大的區(qū)域與滾輪下壓的區(qū)域一致。因此,芯片封裝時適當(dāng)旋轉(zhuǎn)角度,例如 45。 ,可以提升智能卡機械強度的表現(xiàn)。

(4)當(dāng)固定 EMC 總厚度時變化芯片厚度,隨著芯片越厚芯片最大應(yīng)力越大;當(dāng)固定 EMC 3 厚度時變化芯片厚度,隨著芯片越厚芯片最大應(yīng)力越小。因此,芯片厚度增加,可以提升智能卡機械強度的表現(xiàn),在芯片封裝時在情況允許下,應(yīng)采取較大的芯片厚度值。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 芯片
    +關(guān)注

    關(guān)注

    452

    文章

    49927

    瀏覽量

    419589
  • IC
    IC
    +關(guān)注

    關(guān)注

    36

    文章

    5832

    瀏覽量

    174901
  • emc
    emc
    +關(guān)注

    關(guān)注

    167

    文章

    3816

    瀏覽量

    182530
  • 有限元
    +關(guān)注

    關(guān)注

    1

    文章

    26

    瀏覽量

    10788
收藏 人收藏

    評論

    相關(guān)推薦

    安泰ATA-2042高壓放大器在快速旋轉(zhuǎn)軟體驅(qū)動器研究中的應(yīng)用

    實驗名稱:快速旋轉(zhuǎn)軟體驅(qū)動器研究 實驗?zāi)康模禾岢鲆环N基于壓電振動驅(qū)動的新型可旋轉(zhuǎn)軟體驅(qū)動器,通過理論和有限元模擬分析了該驅(qū)動器在激勵力作用下的受力及運動機理,
    的頭像 發(fā)表于 10-12 11:39 ?120次閱讀
    安泰ATA-2042高壓放大器在快速旋轉(zhuǎn)軟體驅(qū)動器<b class='flag-5'>研究</b>中的應(yīng)用

    使用FEMM(有限元法磁性學(xué))對電感式傳感器進行仿真

    電子發(fā)燒友網(wǎng)站提供《使用FEMM(有限元法磁性學(xué))對電感式傳感器進行仿真.pdf》資料免費下載
    發(fā)表于 09-19 11:13 ?1次下載
    使用FEMM(<b class='flag-5'>有限元</b>法磁性學(xué))對電感式傳感器進行仿真

    導(dǎo)彈電磁彈射器有限元仿真及分析

    電子發(fā)燒友網(wǎng)站提供《導(dǎo)彈電磁彈射器有限元仿真及分析.pdf》資料免費下載
    發(fā)表于 08-22 12:18 ?1次下載

    一種天線支架的結(jié)構(gòu)設(shè)計及有限元分析

    結(jié)合某型接收天線使用要求,設(shè)計了一型天線支架,并對其進行有限元分析分析在12級風(fēng)作用下天線支架的應(yīng)力和變形,確定了具體的設(shè)計參數(shù),實現(xiàn)了結(jié)構(gòu)安全可靠和輕量化。所提方法適用于天線支架的靜力學(xué)分析問題,可為同類型設(shè)計提供參考。
    的頭像 發(fā)表于 08-13 17:22 ?129次閱讀
    一種天線支架的結(jié)構(gòu)設(shè)計及<b class='flag-5'>有限元分析</b>

    竹木芯片:綠色科技與智能生活的完美結(jié)合 #智能 #ic智能 #木 #環(huán)保木

    IC智能
    深圳市融智興科技有限公司
    發(fā)布于 :2024年07月26日 16:14:39

    高壓功率放大器在徑向駐波型超聲波電機研究中的應(yīng)用

    實驗名稱:大力矩徑向駐波型超聲波電機有限元分析與實驗研究研究方向:超聲電機測試目的:提出了一種大力矩徑向駐波型超聲波電機,在實現(xiàn)電機大力矩輸出的同時保持結(jié)構(gòu)緊湊的特點。首先設(shè)計并分析
    的頭像 發(fā)表于 07-18 17:01 ?455次閱讀
    高壓功率放大器在徑向駐波型超聲波電機<b class='flag-5'>研究</b>中的應(yīng)用

    頭盔三維掃描和3D打印在頭盔受力研究中的技術(shù)應(yīng)用

    頭盔作為保護頭部安全的重要裝備,在各種運動和工業(yè)領(lǐng)域都有廣泛應(yīng)用。為了提高頭盔的防護性能,科學(xué)家們一直致力于研究頭盔在受到?jīng)_擊時的受力情況。近年來,隨著三維掃描技術(shù)的快速發(fā)展,該技術(shù)已經(jīng)成為頭盔受力
    的頭像 發(fā)表于 05-11 16:17 ?322次閱讀
    頭盔三維掃描和3D打印在頭盔<b class='flag-5'>受力</b><b class='flag-5'>研究</b>中的技術(shù)應(yīng)用

    懸空打線工藝在 MEMS 芯片固定中的應(yīng)用分析

    芯片進行固定封裝,并運用有限元仿真分析軟件,以加速度傳感器的動力輸出參數(shù)為量化指標(biāo),對比分析傳統(tǒng)黏合劑粘貼封裝和懸空打線封裝的實施效果。研究
    的頭像 發(fā)表于 02-25 17:11 ?470次閱讀
    懸空打線工藝在 MEMS <b class='flag-5'>芯片</b>固定中的應(yīng)用<b class='flag-5'>分析</b>

    基于有限元模型IC芯片受力分析研究

    在智能三輪測試中,失效表現(xiàn)為芯片受損,本文基于有限元模型研究智能 IC
    的頭像 發(fā)表于 02-25 09:49 ?555次閱讀
    基于<b class='flag-5'>有限元</b><b class='flag-5'>模型</b>的<b class='flag-5'>IC</b><b class='flag-5'>卡</b><b class='flag-5'>芯片</b><b class='flag-5'>受力</b><b class='flag-5'>分析研究</b>

    粘接層空洞對功率芯片熱阻的影響

    共讀好書 潘浩東 盧桃 陳曉東 何驍 鄒雅冰 (工業(yè)和信息化部電子第五研究所) 摘要: 采用有限元數(shù)值模擬方法,建立金氧半場效晶體管(MOSFET)三維有限元模型,定義不同大小和位置的
    的頭像 發(fā)表于 02-02 16:02 ?448次閱讀
    粘接層空洞對功率<b class='flag-5'>芯片</b>熱阻的影響

    LabVIEW進行癌癥預(yù)測模型研究

    效果。 LabVIEW在此研究中的應(yīng)用展示了其在處理復(fù)雜醫(yī)學(xué)數(shù)據(jù)和開發(fā)高效預(yù)測模型方面的獨特優(yōu)勢,特別是在癌癥早期診斷和治療策略的研究中。通過使用LabVIEW,研究人員可以更快、更準(zhǔn)
    發(fā)表于 12-13 19:04

    基于時步有限元的電機設(shè)計以及案例

    Magneforce是一款由電機工程師構(gòu)想和開放的電機設(shè)計軟件。提供了旋轉(zhuǎn)電機及其驅(qū)動系統(tǒng)的完整解決方案,在一個仿真平臺上實現(xiàn)了電機建模、電磁場有限元計算和驅(qū)動電路的數(shù)字模擬仿真。
    的頭像 發(fā)表于 12-05 09:37 ?807次閱讀
    基于時步<b class='flag-5'>有限元</b>的電機設(shè)計以及案例

    Strand7中創(chuàng)建有限元模型步驟-子模型

    模型功能使你能夠取出已求解模型的一部分做為子模型存入另一個文件。在子模型中,邊界點位移約束由已求得的位移值確定。
    的頭像 發(fā)表于 11-15 10:36 ?484次閱讀
    Strand7中創(chuàng)建<b class='flag-5'>有限元</b><b class='flag-5'>模型</b>步驟-子<b class='flag-5'>模型</b>

    變壓器電磁場問題的自適應(yīng)有限元分析

    電子發(fā)燒友網(wǎng)站提供《變壓器電磁場問題的自適應(yīng)有限元分析.pdf》資料免費下載
    發(fā)表于 10-31 09:35 ?0次下載
    變壓器電磁場問題的自適應(yīng)<b class='flag-5'>有限元分析</b>

    永磁輪轂電機有限元計算 永磁輪轂電機性能的優(yōu)化

    本文針對機場擺渡車,設(shè)計一臺額定功率60 kW,額定轉(zhuǎn)矩2 500 N·m的外轉(zhuǎn)子表貼式永磁輪轂電機,較好地滿足機場擺渡車運行速度低、運行穩(wěn)定性高的特點。首先給出電機的基本參數(shù)尺寸,其次利用有限元
    的頭像 發(fā)表于 10-30 14:35 ?1313次閱讀
    永磁輪轂電機<b class='flag-5'>有限元</b>計算 永磁輪轂電機性能的優(yōu)化