0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

基于深度學習的圖像塊型超分辨重建的經(jīng)典論文進行關(guān)鍵技術(shù)點分析

zhKF_jqr_AI ? 來源:未知 ? 作者:李倩 ? 2018-03-26 11:15 ? 次閱讀

分辨率極限,無論對于圖像重建或是圖像后處理算法的研究者,都是一項無法回避的技術(shù)指標。在實際的應用場景中,受限于圖像采集設備成本、視頻圖像傳輸帶寬,抑或是成像模態(tài)本身的技術(shù)瓶頸,我們并不是每一次都有條件獲得邊緣銳化,無塊狀模糊的大尺寸高清圖像。在這種需求背景下,超分辨重建技術(shù)應運而生。

圖1:圖片壓縮與傳輸

應用場景I:圖片壓縮與傳輸,即以較低的碼率進行圖像編碼,在傳輸過程中可極大節(jié)省轉(zhuǎn)發(fā)服務器的流量帶寬,在客戶端解碼得到相對低清晰度的圖片,最后通過超分辨重建技術(shù)處理獲得高清晰度圖片

圖2:生物組織成像

應用場景II:生物組織成像 左圖:光聲顯微成像圖像 右圖:光聲超分辨顯微圖像,細微的蜜蜂翅膀紋理清晰可見

傳統(tǒng)超分辨重建技術(shù)大體上可分為4類,分別是預測型(prediction-based), 邊緣型(edge-based), 統(tǒng)計型(statistical)和圖像塊型(patch-based/example-based)的超分辨重建方法。

我們選擇了4篇基于深度學習的圖像塊型超分辨重建的經(jīng)典論文進行關(guān)鍵技術(shù)點分析,從中我們可以看出研究者們對于超分辨任務的不同的理解與解決問題思路。在2012年AlexNet以15.4%的歷史性超低的分類錯誤率獲得ImageNet大規(guī)模視覺識別挑戰(zhàn)賽年度冠軍,吹響了深度學習在計算機視覺領域爆炸發(fā)展的號角之后。超分辨重建技術(shù)也開始采用深度學習的思想,以期獲得更優(yōu)的算法表現(xiàn)。

SRCNN

SRCNN是基于深度學習的超分辨重建領域的開山之作,繼承了傳統(tǒng)機器學習領域稀疏編碼的思想,利用三層卷積層分別實現(xiàn):

圖像的圖像塊抽取與稀疏字典建立

圖像高、低分辨率特征之間的非線性映射

高分辨率圖像塊的重建

具體地,假設需要處理的低分辨率圖片的尺寸為H × W × C, 其中H、W、C分別表示圖片的長、寬和通道數(shù);SRCNN第一層卷積核尺寸為C × f1 × f1 × n1,可以理解為在低分辨率圖片上滑窗式地提取f1 × f1的圖像塊區(qū)域進行n1種類型的卷積操作。在全圖范圍內(nèi),每一種類型卷積操作都可以輸出一個特征向量,最終n1個特征向量構(gòu)成了低分辨率圖片的稀疏表示的字典,字典的維度為H1 × W1 × n1;SRCNN第二層卷積核尺寸為n1 × 1 × 1 × n2,以建立由低分辨率到高分辨率稀疏表示字典之間的非線性映射,輸出的高分辨率稀疏字典的維度為H1 × W1 × n2,值得注意的是在這一步中SRCNN并未采用全連接層(fully connected layer)來進行特征圖或是稀疏字典之間的映射,而是采用1x1卷積核,從而使得空間上每一個像素點位置的映射都共享參數(shù),即每一個空間位置以相同的方式進行非線性映射; SRCNN第三層卷積核尺寸為n2 × f3 × f3 × C,由高分辨率稀疏字典中每一個像素點位置的n2 × 1向量重建f3 × f3圖像塊,圖像塊之間相互重合覆蓋,最終實現(xiàn)圖片的超分辨率重建。

圖3:SRCNN的三層卷積結(jié)構(gòu)

ESPCN

在SRCNN將CNN引入超分辨率重建領域之后,研究者們開始考慮如何利用“卷積”來解決更深入的問題。

如果對一幅高分辨率圖片做高斯平滑或是降采樣可以等效為卷積操作,那么由降采樣后低分辨率圖片恢復高分辨率的過程則相應的等效為反卷積操作(deconvolution)。此時我們的計算任務是學習合適的解卷積核,從低分辨率圖片中恢復高分辨率圖像。

CNN中反卷積層的標準做法如圖4所示,對一幅低分辨率圖片填充零值(zero padding),即以每一個像素點位置為中心,周圍2×2或3×3鄰域填充0,再以一定尺寸的卷積核進行卷積操作。

圖4:標準反卷積層實現(xiàn)示意圖

但是標準反卷積操作的弊端是顯而易見的,首先,填充的零值并不包含任何圖像相關(guān)的有效信息,其次填充后的圖片卷積操作的計算復雜度有所增加。

在這種情況下,Twitter圖片與視頻壓縮研究組將sub-pixel convolution的概念引入SRCNN中。

圖5:Efficient Sub-Pixel Convolutional Neural Network (ESPCN)網(wǎng)絡結(jié)構(gòu)

Sub-Pixel核心思想在于對于任意維度為H × W × C的圖像,標準反卷積操作輸出的特征圖維度為rH × rW × C,其中r為超分辨系數(shù)即圖片尺寸放大的倍數(shù),而sub-pixel的輸出特征圖維度為H × W × C × r2,即令特征圖與輸入圖片的尺寸保持一致,但增加卷積核的通道數(shù),既使得輸入圖片中鄰域像素點的信息得到有效利用,還避免了填充0引入的計算復雜度增加。

Perceptual Loss

相較于其他機器學習任務,如物體檢測(object detection)或者實例分割(instance segmentation),超分辨重建技術(shù)中學習任務的損失函數(shù)的定義通常都相對簡單粗暴,由于我們重建的目的是為了使得重建的高分辨率圖片與真實高清圖片之間的峰值信噪比(Peak Signal-to-Noise Ratio, PSNR)盡可能的大,因此絕大多數(shù)的基于深度學習的超分辨重建研究都直接的將損失函數(shù)設計為平均均方差(Mean Square Error, MSE),即計算兩幅圖片所有對應像素位置點之間的均方差,由于MSE Loss要求像素點之間位置一一對應,因此又被稱作Per-Pixel Loss。

但隨著技術(shù)的發(fā)展,研究者慢慢發(fā)現(xiàn)Per-Pixel Loss的局限性。考慮一個極端的情況,將高清原圖向任意方向偏移一個像素,事實上圖片本身的分辨率與風格并未發(fā)生太大的改變,但Per-Pixel Loss卻會因為這一個像素的偏移而出現(xiàn)顯著的上升,因此Per-Pixel Loss的約束并不能反應圖像高級的特征信息(high-level features)。

因此研究圖像風格遷移的研究者們相對于Per-Pixel Loss在2016年的CVPR會議上提出了Perceptual Loss的概念。

圖6:基于Perceptual Loss的全卷積網(wǎng)絡結(jié)構(gòu)

基于Per-Pixel Loss的超分辨重建網(wǎng)絡目標在于直接最小化高清原圖與超分辨重建圖像之間的差異,使得超分辨重建圖像逐步逼近原圖的清晰效果。但Perceptual Loss最小化的是原圖與重建圖像的特征圖之間的差異,為了提高計算效率,Perceptual Loss中的特征圖由固定權(quán)重值的卷積神經(jīng)網(wǎng)絡提取,例如在ImageNet數(shù)據(jù)集上預訓練得到的VGG16網(wǎng)絡,如圖7所示,不同深度的卷積層提取的特征信息不同,反映的圖像的紋理也不同。

圖7:不同深度的卷積層提取的圖片特征示意圖

因此研究者們在訓練超分辨神經(jīng)網(wǎng)絡時,利用跨間隔的卷積層(strided convolution layer)代替池化層(pooling layer)構(gòu)建全卷積神經(jīng)網(wǎng)絡(Fully Convolutional Network, FCN)進行超分辨重建,并在卷積層之間添加殘差結(jié)構(gòu)(residual block)以在保證網(wǎng)絡擬合性能的前提下加深網(wǎng)絡深度獲得更佳表現(xiàn)。最終利用VGG16網(wǎng)絡對原圖與重建圖像進行特征提取,最小化兩者特征圖之間的差異使得超分辨重建圖像不斷逼近原圖的分辨率。

RAISR

前面提到的幾種典型的圖像塊型(也被稱作樣例型)超分辨技術(shù),都是在高低分辨率圖像塊一一對應的數(shù)據(jù)基礎上,學習由低分辨率到高分辨率圖像塊的映射。具體的來說,通常這種映射是一系列的濾波器,針對輸入圖片不同像素位置點的不同的紋理特征來選擇適當?shù)臑V波器進行超分辨重建?;谶@種思想,Google于2016年在SRCNN,A+以及ESPCN等超分辨研究的基礎上發(fā)布了RAISR算法。

該算法主打高速的實時性能與極低的計算復雜度,核心思想在于利用配對的高低分辨率圖像塊訓練得到一系列的濾波器,在測試時根據(jù)輸入圖片的局部梯度統(tǒng)計學特性索引選擇合適的濾波器完成超分辨重建。因此RAISR算法由兩部分組成,第一部分是訓練高低分辨率映射(LR/HR mapping)的濾波器,第二部分是建立濾波器索引機制(hashing mechanism)。

圖8:RAISR 2倍上采樣濾波器

下圖為RAISR在2x上采樣率時與SRCNN,A+等超分辨算法的技術(shù)指標對比。左為PSNR-runtime指標,右圖為SSIM-runtime指標。

圖9:RAISR在2x上采樣率時與SRCNN,A+等超分辨算法的技術(shù)指標對比

結(jié)語

超分辨率重建在醫(yī)學影像處理、壓縮圖像增強等方面具有廣闊的應用前景,近年來一直是深度學習社區(qū)研究的熱點領域。卷積和殘差構(gòu)件的改進、不同種類Perceptual Loss的進一步分析、對抗生成網(wǎng)絡用于超分辨率重建的探索等都是值得關(guān)注的方向。相信我們很快就能看到深度學習在超分辨率重建領域的更多重大進展。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡

    關(guān)注

    42

    文章

    4722

    瀏覽量

    100308
  • 機器學習
    +關(guān)注

    關(guān)注

    66

    文章

    8320

    瀏覽量

    132165

原文標題:一文概覽基于深度學習的超分辨率重建架構(gòu)

文章出處:【微信號:jqr_AI,微信公眾號:論智】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    分辨圖像重建方法研究

    分辨圖像重建方法研究分辨圖像
    發(fā)表于 03-14 17:08

    分辨圖像重建方法研究

    分辨圖像重建就是由低分辨圖像序列來估計高分辨
    發(fā)表于 03-14 08:33 ?47次下載

    基于POCS算法的圖像分辨重建

    分辨技術(shù)是指通過融合多幅模糊、變形、頻譜混疊的低分辨圖像重建一幅高
    發(fā)表于 11-08 17:03 ?40次下載

    序列圖像分辨重建算法研究

    分辨重建(Super-resolution Reconstruction,SR)技術(shù)是提高圖像和視頻
    發(fā)表于 03-08 14:56 ?32次下載
    序列<b class='flag-5'>圖像</b><b class='flag-5'>超</b><b class='flag-5'>分辨</b>率<b class='flag-5'>重建</b>算法研究

    一種增強的單幅圖像學習分辨方法

    特征和對應高分辨圖像的中心像素,并給圖像中不同像素賦予不同的權(quán)重,強調(diào)中心像素點在構(gòu)建
    發(fā)表于 11-28 10:09 ?1次下載
    一種增強的單幅<b class='flag-5'>圖像</b>自<b class='flag-5'>學習</b><b class='flag-5'>超</b><b class='flag-5'>分辨</b>方法

    結(jié)合壓縮感知與非局部信息的圖像分辨重建

    針對現(xiàn)有的分辨重建算法只考慮圖像的灰度信息,而忽略了紋理信息,并且大多數(shù)非局部方法在強調(diào)非局部信息的同時,沒有考慮局部信息的問題,提出
    發(fā)表于 12-13 10:44 ?1次下載

    數(shù)據(jù)外補償?shù)?b class='flag-5'>深度網(wǎng)絡分辨重建

    單張圖像分辨重建受到多對一映射的困擾,對于給定的低分辨圖像
    發(fā)表于 12-15 14:34 ?0次下載

    基于多字典學習分辨重建

    針對單一冗余字典在稀疏表示圖像分辨重建結(jié)果出現(xiàn)不清晰、偽影以及重建過程編碼效率不高、運算時間過長的問題,提出一種基于多字典
    發(fā)表于 12-19 15:56 ?0次下載

    最小二乘規(guī)則的單幅圖像分辨算法

    差異性的角度提出了一種使用迭代最小二乘字典學習算法(ILS-DLA),并使用錨定鄰域回歸(ANR)進行圖像重建的單幅圖像
    發(fā)表于 12-22 11:04 ?0次下載
    最小二乘規(guī)則的單幅<b class='flag-5'>圖像</b><b class='flag-5'>超</b><b class='flag-5'>分辨</b>算法

    序列圖像分辨重建

    進行配準,使圖像的配準精度達到亞像素級,進而可以利用圖像間的互補信息提高圖像分辨率;其次利用L1和L2混合范式的優(yōu)點,用BTV正則化算法解決
    發(fā)表于 01-15 15:42 ?0次下載

    基于鄰域特征學習的單幅圖像分辨重建

    針對圖像重建過程中待插值灰度估計不準確的問題,提出一種基于鄰域特征學習的單幅圖像
    發(fā)表于 02-07 15:59 ?1次下載
    基于鄰域特征<b class='flag-5'>學習</b>的單幅<b class='flag-5'>圖像</b><b class='flag-5'>超</b><b class='flag-5'>分辨</b><b class='flag-5'>重建</b>

    基于結(jié)構(gòu)自相似性和形變特征的單幅圖像分辨率算法

    率訓練樣本不足的缺陷;接著,通過樣例的幾何形變提升了局限性的內(nèi)部字典大小;最后,為了提升重建圖片的抗噪性,利用組稀疏學習字典來重建圖像。實
    發(fā)表于 12-02 16:34 ?8次下載
    基于結(jié)構(gòu)自相似性和形變<b class='flag-5'>塊</b>特征的單幅<b class='flag-5'>圖像</b><b class='flag-5'>超</b><b class='flag-5'>分辨</b>率算法

    基于復合的深度神經(jīng)網(wǎng)絡的圖像分辨重建

    針對現(xiàn)有單圖像分辨重建時主要采用的簡單鏈式堆疊的單一網(wǎng)絡存在層間聯(lián)系弱、網(wǎng)絡關(guān)注單一以及分層特征不能充分利用等問題,提出了一種復合的
    發(fā)表于 04-13 10:35 ?5次下載
    基于復合的<b class='flag-5'>深度</b>神經(jīng)網(wǎng)絡的<b class='flag-5'>圖像</b><b class='flag-5'>超</b><b class='flag-5'>分辨</b>率<b class='flag-5'>重建</b>

    基于非局部稀疏表示的圖像分辨重建算法

    基于稀疏表示模型的彩色圖像分辨重建方法通常采用基于圖像的稀疏編碼過程,易導致稀疏表示不穩(wěn)定
    發(fā)表于 05-25 16:43 ?5次下載

    什么是基于深度學習分辨

    基于深度學習分辨率是將學習的上采樣(up-sampling)函數(shù)應用于圖像的過程,目的是增強
    的頭像 發(fā)表于 05-24 09:33 ?2663次閱讀
    什么是基于<b class='flag-5'>深度</b><b class='flag-5'>學習</b>的<b class='flag-5'>超</b><b class='flag-5'>分辨</b>率