0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

一種單神經元模糊PID控制方法

SwM2_ChinaAET ? 來源:未知 ? 作者:李倩 ? 2018-05-09 09:21 ? 次閱讀

摘要:針對傳統(tǒng)PID控制方法對雙轉子永磁同步電機進行控制時參數(shù)攝動、抗干擾能力差等缺點,提出一種單神經元模糊PID控制方法。首先建立雙轉子永磁同步電機的數(shù)學模型,設計了單神經元模糊PID控制器,然后利用MATLAB實現(xiàn)了系統(tǒng)設計與仿真。最后通過傳統(tǒng)PID和單神經元模糊PID控制的仿真結果進行對比分析,仿真結果表明,單神經元模糊PID控制可以顯著提高系統(tǒng)的魯棒性,使雙轉子永磁同步電機控制系統(tǒng)具有更好的動、靜態(tài)性能和抗干擾能力。

0引言

在水下航行器行進過程中,為了保持自身姿態(tài)平穩(wěn),一般采用兩臺常規(guī)電機或者單臺常規(guī)電機加復雜的行星減速器傳動系統(tǒng)拖動雙螺旋漿旋轉。前者傳動系統(tǒng)成本高,后者結構復雜,易出故障且機械傳動效率較低[1]。

風力發(fā)電中采用永磁電機,但風力發(fā)電受天氣影響較大,風速須達到特定的范圍所得電壓才可使用,風速過小或過大所得電壓都無法并入電網,從而使得由永磁電機所設計的風力發(fā)電機所產生的可用電壓范圍較窄[2]。

雙轉子永磁同步電機采用內外轉子、中間定子結構,其可靠性高,定子鐵心利用率高,系統(tǒng)運行效率高[3]。電機剖面圖如圖1所示。航行過程中自身即可抵消陀螺效應,可直接驅動對轉螺旋推進系統(tǒng)。在風力發(fā)電領域可以拓寬可用電壓范圍。由于雙轉子永磁同步電機(DRPMSM)的上述諸多優(yōu)點,使得它越來越受到專家學者的關注。

雙轉子永磁同步電機為典型的非線性強耦合系統(tǒng),實際運行過程中會因為干擾或復雜變化等原因,影響控制精度和系統(tǒng)的穩(wěn)定性。中采用模糊控制對雙轉子電機進行控制,但是模糊控制對模糊規(guī)則選擇敏感,實時性無法保證;文獻[7]中采用單神經元PID控制方法,雖然可以優(yōu)化電機啟動性能,但控制器增益無法實現(xiàn)自我調節(jié);文獻[8]中采用滑模變結構對永磁同步電機進行控制,但滑模軌跡在進行反向切換時不能連續(xù),且控制過程復雜。

基于以上問題,本文提出了單神經元模糊PID控制方法,在MATLAB環(huán)境下搭建了系統(tǒng)仿真模型,并對比了傳統(tǒng)PID控制與單神經元模糊PID控制的仿真結果。

1雙轉子永磁同步電機的數(shù)學模型

雙轉子永磁同步電機是一種新型電機,它與普通PMSM的差別在于原來靜止的定子也可以旋轉,所以兩者具有相同的電磁關系,在建立電機數(shù)學模型前,做如下理想化假設[9]:

(1)電機各相繞組結構對稱;

(2)電機具有正弦形反電動勢波形;

(3)忽略磁路飽和;

(4)忽略磁滯損耗。

參照普通永磁電機,可得雙轉子電機的數(shù)學模型[10],如下所示:

2控制器原理及系統(tǒng)設計

2.1

單神經元PID控制器原理

單神經元控制器基于人腦神經元的結構與特征,其模型如圖2所示。

圖2中r(k)為給定轉速信號,n(k)為實際反饋信號,u(k)為單神經元PID控制器輸出值,w1(k)、w2(k)、w3(k)是分別對應于x1(k)、x2(k)、x3(k)的加權系數(shù)。利用給定速度r(k)與實際輸出信號n(k)之間的誤差作為控制偏差:

再通過狀態(tài)轉換器轉化為神經元學習控制所需要的狀態(tài)量x1、x2、x3,從而可得:

采用上述學習規(guī)則系統(tǒng)可自動調節(jié)各輸入量的權重。將這種控制策略應用于雙轉子永磁同步電機,可提高控制系統(tǒng)的抗干擾能力,簡化算法的復雜度,可實現(xiàn)轉速控制器的平穩(wěn)飽和。但是對神經元比例系數(shù)K值選取卻是人為設定的,且一旦選定,無法動態(tài)調節(jié),選擇起來十分困難,K值過高,會使得系統(tǒng)超調過大,增加系統(tǒng)響應時間;過低則系統(tǒng)響應速度變慢,實時性得不到保障。

2.2

單神經元模糊PID控制器設計

由于單神經元PID控制中的神經元比例系數(shù)選取困難,本文在此基礎上設計了單神經元模糊PID控制器,其原理圖如圖3所示。

基于單神經元PID控制的缺點,本文通過模糊控制策略調整控制器增益,控制策略如圖4所示。

模糊PID控制系統(tǒng)性能取決于模糊控制規(guī)則的制定,本文在分析矢量控制轉速響應曲線的基礎上,制定了模糊控制規(guī)則[12]。

本文選取7個詞匯描述輸入輸出變量,即{NB,NM,NS,ZO,PS,PM,PB},采用三角隸屬度函數(shù)曲線作為輸入/輸出變量的隸屬函數(shù),如圖5所示。它計算工作量少,靈敏度高。模糊推理采用Mamdani方法[13],反模糊化采用加權平均法??刂埔?guī)則表如表1所示。

3仿真結果及分析

基于MATLAB搭建了電機矢量控制和單神經元模糊PID控制兩種仿真控制模型,電機的各項參數(shù)如下所示:電機極對數(shù)為4,額定電壓為220 V,內外電樞電阻為1.437 5 Ω,永磁磁鏈均為0.175 Wb,粘性摩擦系數(shù)為0,電機轉子的dq軸等效電感為4.25×10-3mH。在MATLAB/Simulink設置界面設定仿真模型起始時間為0 s,停止時間為0.5 s,初始給定速度值為100 rad/s;在0.15 s時內外轉子給定轉速從初始的100 rad/s跳變?yōu)?50 rad/s;在0.25 s時內外電機轉子力矩由1 N·m變?yōu)?.5 N·m。在此仿真基礎上,分析電機的輸出特性和響應速度。并且將實驗結果與傳統(tǒng)的矢量控制方法進行對比試驗,從而可以驗證本次所設計的雙轉子永磁同步電機數(shù)學模型的正確性和相應控制算法的控制效果。

圖6~圖8分別顯示了在傳統(tǒng)矢量控制下,雙轉子永磁同步電機在內外轉子轉速、力矩和三相電流的響應曲線。從仿真結果的波形分析中可以看到,傳統(tǒng)的矢量控制方法所得的內外電機的轉速響應曲線具有較大的超調量和較長時間的震蕩調整過程;對于電機的力矩,當轉速發(fā)生改變時,力矩變化明顯;而對于三相電流,在電機達到預定轉速和轉速發(fā)生改變時,三相電流變化幅度較大,電機在較長時間里方能達到設定值。

圖9~圖11是利用單神經元模糊PID控制方法所得的響應曲線圖,可以看到電機在較短時間里轉速達到了設定值100 rad/s,當電機到達穩(wěn)定速度并持續(xù)一段時間以后,在0.15 s時將內外轉子速度從100 rad/s跳變?yōu)?50 rad/s。從圖9可以看出,與矢量控制相比,當設定轉速發(fā)生改變時,內外轉子的轉速都快速地達到了給定的轉速,響應速度較快。同樣地,可以看到內外電機的力矩響應曲線,在較短時間里面內外轉子力矩達到了給定值,從圖10看出內外電機的電磁轉矩保持在給定值1 N·m的電磁轉矩不變。持續(xù)一段時間以后。由于在0.15 s時設定轉速變大,使得內外轉子力矩發(fā)生波動,但是從圖10可知,力矩很快恢復到穩(wěn)定值。當電機三相電流在給定內外轉子轉速和力矩的情況下,在較快速度下達到穩(wěn)定值,在達到穩(wěn)定穩(wěn)定狀態(tài)并持續(xù)一段時間以后,由于轉速發(fā)生改變,使得三相電流出現(xiàn)了波動,但是隨后快速穩(wěn)定下來,如圖11所示。在0.25 s時人為將力矩變?yōu)?.5 N·m,從圖10可以看出電機內外轉速受力矩變化影響很小,幾乎沒有變化,在圖10中,當力矩大小發(fā)生改變時,電機的力矩響應非常迅速,很快就達到了1.5 N·m。圖11看出當三相電流的波形曲線在力矩發(fā)生改變的同時,能夠快速的響應,達到較理想的穩(wěn)定狀態(tài)。

總的來說,仿真結果表明,本文所設計的雙轉子永磁同步電機(DRPMSM)單神經元模糊PID控制系統(tǒng)仿真結果在運行過程中,轉速、力矩、三相電流都能保持平穩(wěn),當轉速、力矩在某時間段里改變的情況下,也能夠在短時間里穩(wěn)定下來。與傳統(tǒng)的矢量控制方法相對比,本次所設計的控制系統(tǒng)響應速度更快,仿真結果較理想。

4結論

本文分析了雙轉子永磁同步電機(DRPMSM)的工作原理,建立了電機的數(shù)學模型,搭建了單神經元模糊PID控制系統(tǒng),并進行了對比仿真研究。仿真結果表明:在轉速、力矩發(fā)生改變的情況下,采用單神經元模糊PID控制方法運行響應速度都達到了預期的實驗效果,相比于傳統(tǒng)的矢量控制系統(tǒng)具有更好的動靜態(tài)性能。通過仿真結果的分析,深入了解了雙轉子永磁同步電機的轉速、力矩和相電流各自的特點和它們之間的相互影響。同時,本次試驗結果也為進一步分析和設計雙轉子永磁同步電機(DRPMSM)本體結構和控制策略提供了參考。當然本文對電機內外轉子之間的相互干擾并未做相關分析,對于如何優(yōu)化控制策略,使控制器性能達到最優(yōu)還有待進一步實驗分析,在今后的研究中,相信對于本體結構優(yōu)化設計、電機數(shù)學模型的改進以及控制算法的創(chuàng)新會是雙轉子永磁同步電機研究的重點。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 永磁電機
    +關注

    關注

    4

    文章

    333

    瀏覽量

    24864
  • PID控制
    +關注

    關注

    10

    文章

    449

    瀏覽量

    39979
  • 神經元
    +關注

    關注

    1

    文章

    363

    瀏覽量

    18423

原文標題:【學術論文】雙轉子永磁同步電機控制的建模與仿真

文章出處:【微信號:ChinaAET,微信公眾號:電子技術應用ChinaAET】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    基于神經元PID控制實現(xiàn)

    介紹了一種神經元自適應控制方法,并提出了在線調整的方法。該
    的頭像 發(fā)表于 08-31 08:31 ?1.4w次閱讀
    基于<b class='flag-5'>單</b><b class='flag-5'>神經元</b>的<b class='flag-5'>PID</b><b class='flag-5'>控制</b>實現(xiàn)

    采用神經元自適應控制高精度空調系統(tǒng)仿真

    具有自學習、自適應功能的神經元控制算法引入高精度空調控制領域,并通過MATLAB仿真,考察了系統(tǒng)的控制效果。仿真結果表明此控制
    發(fā)表于 03-18 22:28

    如何去設計一種自適應神經元控制器?求過程

    如何去設計一種自適應神經元控制器?求過程
    發(fā)表于 05-17 06:56

    適用于非線性對象的模糊神經元控制方法

    針對具有嚴重非線性的受控對象,提出了一種模糊神經元控制方法。該
    發(fā)表于 03-17 10:24 ?9次下載

    神經元PID算法在倒立擺控制系統(tǒng)中的應用

    倒立擺是非線性、不穩(wěn)定的系統(tǒng)。本文使用神經元PID 控制算法,設計出基于小車位移和擺桿擺角兩個回路的
    發(fā)表于 06-11 16:39 ?23次下載

    一種基于PID神經網絡的解耦控制方法的研究

    為了消除造紙工業(yè)抄紙過程中存在的解耦問題,提出了一種基于PID 神經網絡的解耦方法。文章在介紹PID
    發(fā)表于 06-15 10:10 ?19次下載

    神經元PID雙直線電機同步控制

    本文采用神經元自適應PID 控制方案,將其應用于重型龍門移動式鏜銑加工中心雙直線電機驅動 的軸間反饋回路,以抑制由不同步引起的不平衡扭矩。仿真結果表明,該
    發(fā)表于 06-17 11:31 ?31次下載

    神經元自適應PID控制器設計方法研究

    本文主要介紹了采用有監(jiān)督Hebb 學習算法的神經元自適應PID 控制器以及采用以輸出誤差平方為性能指標的
    發(fā)表于 07-30 16:34 ?36次下載

    基于FPGA的高速PID智能控制的研究

    介紹了一種基于FPGA 的高速神經元自適應PID 智能控制器的設計方法。首先對
    發(fā)表于 08-10 15:37 ?34次下載

    神經元自適應PID控制在電動油門控制中的應用

    利用神經元模型自學習和自適應特點,在傳統(tǒng)PID 控制基礎上設計出了一種
    發(fā)表于 08-13 08:53 ?22次下載

    一種改進的神經元二自由度PID控制

    提出一種神經元二自由度PID 控制方法,將前饋型二自由度P
    發(fā)表于 08-27 08:35 ?11次下載

    基于神經元PID的航空發(fā)動機解耦控制

    神經網絡應用到PID控制器的參數(shù)整定過程中,提出了一種基于改進神經元
    發(fā)表于 02-11 15:00 ?15次下載

    神經元微分先行PID控制器研究

    文中給出從微分先行PID 算法派生出的神經元PID 控制器,并利用MATLAB/SIMULINK仿真軟件對該控制器在電加熱爐中的應用進行仿真
    發(fā)表于 05-23 15:29 ?66次下載
    <b class='flag-5'>神經元</b>微分先行<b class='flag-5'>PID</b><b class='flag-5'>控制</b>器研究

    基于WLAN與神經元自適應PID的空調系統(tǒng)設計

    為解決傳統(tǒng)空調系統(tǒng)中布線帶來的不便及傳統(tǒng) PID控制 適應性、魯棒性差的問題,設計出一種將WLAN技術和神經元自適應
    發(fā)表于 06-22 14:59 ?23次下載
    基于WLAN與<b class='flag-5'>單</b><b class='flag-5'>神經元</b>自適應<b class='flag-5'>PID</b>的空調系統(tǒng)設計

    基于神經元PID的WSNs鄰居節(jié)點級功率控制算法_何世鈞

    基于神經元PID的WSNs鄰居節(jié)點級功率控制算法_何世鈞
    發(fā)表于 03-19 19:19 ?1次下載