0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

如何正確的增加退耦電容降低生產(chǎn)的噪音?

PE5Z_PCBTech ? 來源:未知 ? 作者:工程師郭婷 ? 2018-07-20 15:18 ? 次閱讀

使用基于電磁場分析的設計軟件來選擇退耦電容的大小及其放置位置可將電源平面與地平面的開關(guān)噪聲減至最小。隨著信號的沿變化速度越來越快,今天的高速數(shù)字電路板設計者所遇到的問題在幾年前看來是不可想象的。對于小于1納秒的信號沿變化,PCB板上電源層與地層間的電壓在電路板的各處都不盡相同,從而影響到IC芯片供電,導致芯片的邏輯錯誤。為了保證高速器件的正確動作,設計者應該消除這種電壓的波動,保持低阻抗的電源分配路徑。為此,你需要在電路板上增加退耦電容來將高速信號在電源層和地層上產(chǎn)生的噪聲降至最低。你必須知道要用多少個電容,每一個電容的容值應該是多大,并且它們放在電路板上什么位置最為合適。一方面你可能需要很多電容,而另一方面電路板上的空間是有限而寶貴的,這些細節(jié)上的考慮可能決定設計的成敗。反復試驗的設計方法既耗時又昂貴,結(jié)果往往導致過約束的設計從而增加不必要的制造成本。使用軟件工具來仿真、優(yōu)化電路板設計和電路板資源的使用情況,對于要反復測試各種電路板配置方案的設計來說是一種更為實際的方法。本文以一個xDSM(密集副載波多路復用)電路板的設計為例說明此過程,該設計用于光纖/寬帶無線網(wǎng)絡。軟件仿真工具使用Ansoft的SIwave,SIwave基于混合全波有限元技術(shù),可以直接從layout工具Cadence Allegro, Mentor Graphics BoardStation, Synopsys Encore和 Zuken CR-5000 Board Designer導入電路板設計。圖1是SIwave中該設計的PCB版圖。由于PCB的結(jié)構(gòu)是平面的,SIwave可以有效的進行全面的分析,其分析輸出包括電路板的諧振、阻抗、選定網(wǎng)絡的S參數(shù)和電路的等效Spice模型。

xDSM電路板的尺寸,也就是電源層和地層的尺寸是11×7.2 英寸(28×18.3 厘米)。電源層和地層都是1.4mil厚的銅箔,中間被23.98mil厚的襯底隔開。為了理解對電路板的設計,首先考慮xDSM電路板的裸板(未安裝器件)特性。根據(jù)電路板上高速信號的上升時間,你需要了解電路板在頻域直到2GHz范圍內(nèi)的特性。圖2所示為一個正弦信號激勵電路板諧振于0.54GHz時的電壓分布情況。同樣,電路板也會諧振于0.81GHz和0.97GHz以及更高的頻率。為了更好地理解,你也可以在這些頻率的諧振模式下仿真電源層與地層間電壓的分布情況。圖2所示在0.54GHz的諧振模式下,電路板的中心處電源層和地層的電壓差變化為零。對于一些更高頻率的諧振模式,情況也是如此。但并非在所有的諧振模式下都是如此,例如在1.07GHz、1.64GHz和1.96 GHz的高階諧振模式下,電路板中心處的電壓差變化是不為零的。

找到零壓差變化點有助于我們將需要在短時間內(nèi)產(chǎn)生大量電流變化的器件放置于此。例如,如果要將一塊Xinlix的FPGA芯片放在電路板上,該芯片會在0.2納秒內(nèi)產(chǎn)生2A的輸入電流變化。如此短時間內(nèi)的大電流變化將帶來電路板的電源完整性問題,會使電路板產(chǎn)生各種模式的諧振,導致電源層和地層電壓的不均勻。然而,電路板中心處在某些諧振模式下具有零壓差變化的特性,因此將FPGA芯片放置于此可以避免電路板產(chǎn)生這些低頻的諧振模式。FPGA芯片不能激發(fā)這些低頻諧振模式,是由于從電路板的中心處將無法耦合至這些諧振模式。圖3中的紫色曲線顯示的是當位于電路板中心處的芯片從電源平面吸入電流時引起的諧振。事實上,峰值出現(xiàn)在高階的諧振頻率1.07GHz、1.64GHz和1.96GHz上,而不是低階的諧振頻率0.54GHz、0.81GHz和0.97GHz上,這正如我們所料。

盡管器件的布局與放置的位置有助于減小電源完整性的問題,但它們并不能解決所有的問題。首先,你不能將所有的關(guān)鍵器件放在電路板的中心。通常情況下,器件放置的靈活性是有限的。其次,在任何給定的位置總有一些諧振模式會被激發(fā)。例如,圖3中綠色曲線表示當你將芯片放置在沿某一坐標軸偏移中心位置時,0.54GHz的諧振模式將被激發(fā)。成功的設計電路板的PDS(電源分配系統(tǒng))的關(guān)鍵在于在合適的位置增加退耦電容,以保證電源的完整性和在足夠?qū)挼念l率范圍內(nèi)保證地彈噪聲足夠小。

退耦電容設想FPGA在0.2納秒的上升沿 吸入2A的電流,此時電源電壓會暫時降低(壓降),而地平面電壓會暫時被拉高(地彈)。其變化幅度取決于電路板的阻抗和芯片偏置管腳處的用于提供電流的退耦電容(圖4a)。由于電流的瞬變值為2A,電壓的瞬變值由V=Z×I決定,Z是從芯片端視出的阻抗,因此,為了避免電壓的尖峰波動,在從直流到信號帶寬的頻率范圍內(nèi),Z值必須低于某一門限值。(圖4b)

如何正確的增加退耦電容降低生產(chǎn)的噪音?

在該設計中,為了保持電源完整性,電源—地的電壓波動必須保持在標準值3.3V的5%以內(nèi)。因此噪聲不能大于0.05×3.3V=165 mV??梢該?jù)此按照歐姆定律計算出PDS的最大阻抗165mV/2A=82.5mΩ,圖4中虛線部分即為PDS阻抗應該滿足的目標區(qū)域。對于最低頻率,通常是1kHz或者更低的頻率——電源滿足阻抗特性的要求,電源和地層的結(jié)構(gòu)通常不會破壞阻抗特性,因為它們呈現(xiàn)低電阻與電感特性。而當頻率高于1kHz時,電流通路的互感大。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 電磁場
    +關(guān)注

    關(guān)注

    0

    文章

    784

    瀏覽量

    47151
  • 退耦電容
    +關(guān)注

    關(guān)注

    1

    文章

    29

    瀏覽量

    9553
  • 開關(guān)噪聲
    +關(guān)注

    關(guān)注

    0

    文章

    18

    瀏覽量

    11245

原文標題:高速PCB仿真——電源完整性與地彈噪聲

文章出處:【微信號:PCBTech,微信公眾號:EDA設計智匯館】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    采用電容退是解決電源噪聲問題的主要方法

    采用電容退是解決電源噪聲問題的主要方法。這種方法對提高瞬態(tài)電流的響應速度,降低電源分配系統(tǒng)的阻抗都非常有效
    的頭像 發(fā)表于 10-23 10:33 ?7550次閱讀
    采用<b class='flag-5'>電容</b><b class='flag-5'>退</b><b class='flag-5'>耦</b>是解決電源噪聲問題的主要方法

    為什么我們都在使用退電容

    例子,如果沒有合適的退,運放會更容易產(chǎn)生振蕩。了解使用退電容的原因能夠增加你對這個問題的理解
    發(fā)表于 09-21 09:52

    退電容的放置位置

    去年第一次跟著師父去做產(chǎn)品的EMC實驗的時候,頗有收獲在此整理分享給大家。以前在學生時代的時候?qū)τ贛CU退電容的作用理解的并不是很透徹,導致不是很關(guān)心退
    發(fā)表于 11-10 08:24

    退電容

    退電容
    發(fā)表于 03-04 17:56 ?0次下載

    運放為什么要使用退電容呢?

    翻譯: TI信號鏈工程師 Rickey Xiong (熊堯) 每個人都知道運放應該使用靠近運放供電管腳的退電容,對嗎?但為什么要使用這個退
    發(fā)表于 04-08 04:10 ?1.4w次閱讀
    運放為什么要使用<b class='flag-5'>退</b><b class='flag-5'>耦</b><b class='flag-5'>電容</b>呢?

    退電容的布置和布線

    用在退電路中的電容稱為退電容也叫去
    發(fā)表于 11-27 16:51 ?6301次閱讀
    <b class='flag-5'>退</b><b class='flag-5'>耦</b><b class='flag-5'>電容</b>的布置和布線

    什么是退電容

    所謂退,既防止前后電路網(wǎng)絡電流大小變化時,在供電電路中所形成的電流沖動對網(wǎng)絡的正常工作產(chǎn)生影響。換言之,退電路能夠有效的消除電路網(wǎng)絡之間的寄生耦合。用在
    發(fā)表于 11-27 17:11 ?2.3w次閱讀
    什么是<b class='flag-5'>退</b><b class='flag-5'>耦</b><b class='flag-5'>電容</b>

    電容退原理

    采用電容退是解決電源噪聲問題的主要方法,這種方法對提高瞬態(tài)電流的響應速度,降低電源分配系統(tǒng)的阻抗都非常有效。 對于電容
    發(fā)表于 01-26 10:31 ?20次下載
    <b class='flag-5'>電容</b><b class='flag-5'>退</b><b class='flag-5'>耦</b>原理

    旁路電容、電容耦合、退等資源匯總下載

    旁路電容、電容耦合、退等資源匯總下載
    發(fā)表于 07-19 09:23 ?9次下載

    如何正確降低風扇噪音

    Aearo Technologies(3M旗下公司)生產(chǎn)的墊圈就可以減少風扇向安裝結(jié)構(gòu)傳遞振動時產(chǎn)生的噪音。 以下是生產(chǎn)風扇外殼附帶產(chǎn)品的廠商提供的一些插圖。 除了幫助安裝風扇的硬件外,正確
    的頭像 發(fā)表于 10-11 16:34 ?1.1w次閱讀

    MCU退電容引發(fā)的EMC血案

    去年第一次跟著師父去做產(chǎn)品的EMC實驗的時候,頗有收獲在此整理分享給大家。以前在學生時代的時候?qū)τ贛CU退電容的作用理解的并不是很透徹,導致不是很關(guān)心退
    發(fā)表于 11-05 17:35 ?13次下載
    MCU<b class='flag-5'>退</b><b class='flag-5'>耦</b><b class='flag-5'>電容</b>引發(fā)的EMC血案

    如何分清旁路電容退電容?

    無論是旁路電容還是退電容,對于電容器來說,它往往不是單一的一個作用,嚴格來說旁路和去是電路過
    發(fā)表于 10-16 12:34 ?1116次閱讀
    如何分清旁路<b class='flag-5'>電容</b>與<b class='flag-5'>退</b><b class='flag-5'>耦</b><b class='flag-5'>電容</b>?

    退電容和濾波電容的區(qū)別是什么

    退電容和濾波電容在電子電路中扮演著不同的角色,它們各自具有獨特的作用和特點。以下是對兩者區(qū)別的介紹: 一、定義與作用 退
    的頭像 發(fā)表于 09-26 11:16 ?361次閱讀

    退電容一般用多大

    退電容的容量選擇并不是一成不變的,而是需要根據(jù)具體的電路設計需求和工作條件來確定。以下是對退電容
    的頭像 發(fā)表于 09-26 11:28 ?203次閱讀

    退電容大小與音質(zhì)有關(guān)嗎

    退電容的大小與音質(zhì)之間確實存在一定的關(guān)系,但這種關(guān)系相對復雜,并非簡單的線性關(guān)系。 一、退電容
    的頭像 發(fā)表于 09-26 11:31 ?254次閱讀