0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)研究中常見的七大謠傳總結(jié)

MqC7_CAAI_1981 ? 來源:cc ? 2019-02-26 14:05 ? 次閱讀

在學(xué)習(xí)深度學(xué)習(xí)的過程中,我們常會遇到各種謠傳,也會遇到各種想當(dāng)然的「執(zhí)念」。在本文中,作者總結(jié)了機(jī)器學(xué)習(xí)研究中常見的七大謠傳,他們很多都是我們以前的固有概念,而最近又有新研究對它們提出質(zhì)疑。所以在為機(jī)器學(xué)習(xí)填坑的生涯中,快自檢這七個言傳吧。

謠傳一:TensorFlow 是一個張量運(yùn)算庫

事實上,TensorFlow 是矩陣而不是張量運(yùn)算庫,這兩者的區(qū)別非常大。

在 NeurIPS 2018 的論文 Computing Higher Order Derivatives of Matrix and Tensor Expressions 中,研究者表明,他們基于張量微積分(Tensor Calculus)所建立的新自動微分庫具有明顯更緊湊(compact)的表達(dá)式樹(expression trees)。這是因為,張量微積分使用了索引標(biāo)識,進(jìn)而使前向模式和反向模式的處理方式相同。

與此相反,矩陣微積分出于標(biāo)識方便的考慮隱藏了索引,這也通常會導(dǎo)致自動微分的表達(dá)式樹顯得過于復(fù)雜。

若有矩陣的乘法運(yùn)算:C=AB。在前向模式中,有

,而在反向模式中,則有

。為了正確完成乘法計算,我們需要注意乘法的順序和轉(zhuǎn)置的使用。對于機(jī)器學(xué)習(xí)開發(fā)者而言,這只是在標(biāo)識上的一點(diǎn)困惑,但對于程序而言,這是一個計算上的開銷。

以下是另一個例子,毫無疑問意義更大一些:對于求行列式 c=det(A)。在前向模式中,有

,而在反向模式中,則有

。這里可以明顯看出,無法使用同一個表達(dá)式樹來表示兩種模式,因為二者是由不同運(yùn)算組成的。

總的來說,TensorFlow 和其他庫(如 Mathematica、Maple、 Sage、SimPy、ADOL-C、TAPENADE、TensorFlow, Theano、PyTorch 和 HIPS autograd)實現(xiàn)的自動微分方法,會在前向模式和反向模式中,得出不同的、低效的表達(dá)式樹。而在張量微積分中,通過索引標(biāo)識保留了乘法的可交換性,進(jìn)而輕松避免了這些問題(具體的實現(xiàn)原理,請閱讀論文原文)

研究者通過反向傳播,在三個不同問題上,測試了反向模式自動微分新方法的性能,并度量了其計算 Hessian 矩陣所消耗的時間。

第一個問題是優(yōu)化一個形如 xAx 的二次函數(shù);第二個問題是求解一個邏輯回歸;第三個問題是求解矩陣分解。

CPU 上,新方法與當(dāng)下流行的 TensorFlow、Theano、PyTorch 和 HIPS autograd 等自動微分庫相比,要快兩個數(shù)量級。

GPU 上,研究者發(fā)現(xiàn),新方法的提速更加明顯,超出流行庫的速度近似三個數(shù)量級。

意義:利用目前的深度學(xué)習(xí)庫完成對二次或更高階函數(shù)的求導(dǎo),所花費(fèi)的成本比本應(yīng)消耗的更高。這包含了計算諸如 Hessian 的通用四階張量(例:在 MAML 中,以及二階牛頓法)。幸運(yùn)的是,在「深度」學(xué)習(xí)中,二階函數(shù)并不常見。但在「傳統(tǒng)」機(jī)器學(xué)習(xí)中,它們卻廣泛存在:SVM對偶問題、最小二乘回歸、LASSO,高斯過程……

謠傳二:機(jī)器學(xué)習(xí)研究者并不使用測試集進(jìn)行驗證

在機(jī)器學(xué)習(xí)第一門課中,我們會學(xué)習(xí)到將數(shù)據(jù)集分為訓(xùn)練集、驗證集以及測試集。將在訓(xùn)練集上訓(xùn)練得到模型,在驗證集上進(jìn)行效果評估,得出的效果用以指導(dǎo)開發(fā)者調(diào)節(jié)模型,以求在真實場景下獲得效果最好的模型。直到模型調(diào)節(jié)好之后,才應(yīng)該使用測試集,提供模型在真實場景下實際表現(xiàn)的無偏估計。如果開發(fā)者「作弊」地在訓(xùn)練或驗證階段使用了測試集,那么模型就很可能遇到對數(shù)據(jù)集偏差產(chǎn)生過擬合的風(fēng)險:這類偏差信息是無法在數(shù)據(jù)集外泛化得到的。

在機(jī)器學(xué)習(xí)研究高度競爭的環(huán)境下,對新算法/模型的評估,通常都會使用其在測試集上的表現(xiàn)。因此對于研究者而言,沒有理由去寫/提交一篇測試集效果不 SOTA 的論文。這也說明在機(jī)器學(xué)習(xí)研究領(lǐng)域,總體而言,使用測試集進(jìn)行驗證是一個普遍現(xiàn)象。

這種「作弊」行為的影響是什么?

在論文 DoCIFAR-10Classifiers Generalize to CIFAR-10? 中,研究者們通過在 CIFAR-10 上建立了一個新的測試集,來研究此問題。為此,他們解析標(biāo)注了來自 Tiny Images 庫的圖像,就像最初的數(shù)據(jù)采集過程一樣。

常用測試集帶來過擬合?你真的能控制自己不根據(jù)測試集調(diào)參嗎

研究者們之所以選擇 CIFAR-10,是因為它是機(jī)器學(xué)習(xí)界使用最廣泛的數(shù)據(jù)集之一,也是 NeurIPS 2017 中第二受歡迎的數(shù)據(jù)集(在 MNIST 之后)。CIFAR-10 數(shù)據(jù)集的創(chuàng)建過程也有完善公開的文檔記錄。而龐大的 Tiny Images 庫中,也有足夠的細(xì)粒度標(biāo)簽數(shù)據(jù),進(jìn)而使得在盡量不引起分布偏移的情況下重建一個測試集成為了可能。

研究者發(fā)現(xiàn),很多神經(jīng)網(wǎng)絡(luò)模型在從原來的測試集切換到新測試集的時候,都出現(xiàn)了明顯的準(zhǔn)確率下降(4% - 15%)。但各模型的相對排名依然相對穩(wěn)定。

總的來說,相較于表現(xiàn)較差的模型,表現(xiàn)較好模型的準(zhǔn)確率下降程度也相對更小。這是一個振奮人心的消息,因為至少在 CIFAR-10 上,隨著研究社區(qū)發(fā)明出更好機(jī)器學(xué)習(xí)模型/方法,由于「作弊」得到的泛化損失,也變得更加輕微。

謠傳三:神經(jīng)網(wǎng)絡(luò)訓(xùn)練過程會使用訓(xùn)練集中的所有數(shù)據(jù)點(diǎn)。

有這樣一個常見說法,數(shù)據(jù)是新的原油(財富),數(shù)據(jù)量越大,我們就能將數(shù)據(jù)相對不足的、過參數(shù)化的深度學(xué)習(xí)模型訓(xùn)練得越好。

ICLR 2019 的一篇論文 An Empirical Study of Example Forgetting During Deep Neural Network Learning 中,研究者們表示在多個常見的較小圖像數(shù)據(jù)集中,存在顯著冗余。令人震驚的是,在 CIFAR-10 中,我們可以在不顯著影響測試集準(zhǔn)確率的情況下剔除 30% 的數(shù)據(jù)點(diǎn)。

當(dāng)神經(jīng)網(wǎng)絡(luò)在 t+1 時刻給出誤分類、而在 t 時刻給出了準(zhǔn)確的分類時,就稱為發(fā)生了遺忘事件(forgetting event)。這里的「時刻」是指訓(xùn)練網(wǎng)絡(luò)的隨機(jī)梯度下降(SGD)的更新次數(shù)。為了讓記錄遺忘事件變得可行,研究者每次只在用于完成 SGD 更新的小批量數(shù)據(jù)上運(yùn)行神經(jīng)網(wǎng)絡(luò),而不是在數(shù)據(jù)集的單個樣本上運(yùn)行。對于不會經(jīng)歷遺忘事件的樣本,稱之為不可遺忘樣本(unfogettable example)。

研究者發(fā)現(xiàn),MNIST 中 91.7%、permutedMNIST 中 75.3%、CIFAR-10 中 31.3% 以及 CIFAR-100 中 7.62% 的數(shù)據(jù)屬于不可遺忘樣本。這符合直觀理解,因為隨著圖像數(shù)據(jù)集的多樣性和復(fù)雜性上升,神經(jīng)網(wǎng)絡(luò)理應(yīng)遺忘更多的樣本。

相較于不可遺忘樣本,可遺忘樣本似乎表現(xiàn)了更多不尋常的獨(dú)特特征。研究者將其類比于 SVM 中的支持向量,因為它們似乎劃分了決策邊界。

與此相反,不可遺忘樣本則編碼了絕大部分的冗余信息。如果將樣本按其不可遺忘性(unforgettability)進(jìn)行排序,就可以通過刪除絕大部分的不可遺忘樣本,而對數(shù)據(jù)集完成壓縮。

在 CIFAR-10 中,30% 的數(shù)據(jù)可以在不影響測試集準(zhǔn)確率的情況下移除,而刪除 35% 的數(shù)據(jù)則會產(chǎn)生 0.2% 的微小測試準(zhǔn)確率下降。如果所移除的 30% 數(shù)據(jù)是隨機(jī)挑選而非基于不可遺忘性,那么就會導(dǎo)致約 1% 的顯著下降。

與此類似,在 CIFAR-100 上,8% 的數(shù)據(jù)可以在不影響測試集準(zhǔn)確率的情況下移除。

這些發(fā)現(xiàn)表明,在神經(jīng)網(wǎng)絡(luò)的訓(xùn)練中,存在明顯的數(shù)據(jù)冗余,就像 SVM 的訓(xùn)練中,非支持向量的數(shù)據(jù)可以在不影響模型決策的情況下移除。

意義:如果在開始訓(xùn)練之前,就能確定哪些樣本是不可遺忘的,那么我們就可以通過刪除這些數(shù)據(jù)來節(jié)省存儲空間和訓(xùn)練時間。

謠傳四:我們需要批標(biāo)準(zhǔn)化來訓(xùn)練超深度殘差網(wǎng)絡(luò)。

長久以來,人們都相信「通過隨機(jī)初始參數(shù)值和梯度下降,直接優(yōu)化有監(jiān)督目標(biāo)函數(shù)(如:正確分類的對數(shù)概率)來訓(xùn)練深度網(wǎng)絡(luò),效果不會很好。」

從那時起,就有很多聰明的隨機(jī)初始化方法、激活函數(shù)、優(yōu)化方法以及其他諸如殘差連接的結(jié)構(gòu)創(chuàng)新,來降低利用梯度下降訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)的難度。

但真正的突破來自于批標(biāo)準(zhǔn)化(batch normalization)的引入(以及其他的后續(xù)標(biāo)準(zhǔn)化技術(shù)),批標(biāo)準(zhǔn)化通過限制深度網(wǎng)絡(luò)每層的激活值尺度,來緩和梯度消失、爆炸等問題。

值得注意的是,在今年的論文 Fixup Initialization: Residual Learning Without Normalization 中,研究表明在不引入任何標(biāo)準(zhǔn)化方法的情況下,通過使用 vanilla SGD,可以有效地訓(xùn)練一個 10,000 層的深度網(wǎng)絡(luò)。

研究者比較了在 CIFAR-10 上,不同深度殘差網(wǎng)絡(luò)訓(xùn)練一個 epoch 的結(jié)果。并發(fā)現(xiàn),雖然標(biāo)準(zhǔn)初始化方法在 100 層的網(wǎng)絡(luò)上失敗了,但 Fixup 和批標(biāo)準(zhǔn)化都在 10,000 層的網(wǎng)絡(luò)上成功了。

研究者通過理論分析,證明了「特定神經(jīng)層的梯度范數(shù),以某個隨網(wǎng)絡(luò)深度增加而增大的數(shù)值為期望下界」,即梯度爆炸問題。

為避免此問題,F(xiàn)ixup 中的核心思想是在每 L 個殘差分支上,對 m 個神經(jīng)層的權(quán)重,使用同時依賴于 L 和 m 的因子進(jìn)行調(diào)整?!?/p>

Fixup 使得能夠在 CIFAR-10 上以高學(xué)習(xí)速率訓(xùn)練一個 110 層的深度殘差網(wǎng)絡(luò),得到的測試集表現(xiàn)和利用批標(biāo)準(zhǔn)化訓(xùn)練的同結(jié)構(gòu)網(wǎng)絡(luò)效果相當(dāng)。

研究者也進(jìn)一步展示了在沒有任何標(biāo)準(zhǔn)化處理下,基于 Fixup 得到的神經(jīng)網(wǎng)絡(luò)在 ImageNet 數(shù)據(jù)集和英語-德語機(jī)器翻譯任務(wù)上相當(dāng)?shù)臏y試結(jié)果。

謠傳五:注意力>卷積

在機(jī)器學(xué)習(xí)領(lǐng)域,有一個正得到認(rèn)同的說法,認(rèn)為注意力機(jī)制是卷積的更優(yōu)替代。重要的是 Vaswani et al 注意到「一個可分離卷積的計算成本,和一個自注意力層與一個逐點(diǎn)前饋層結(jié)合后的計算成本一致」。

即使是最新的 GAN 網(wǎng)絡(luò),也展示出自注意力相較于標(biāo)準(zhǔn)卷積,在對長期、多尺度依賴性的建模上效果更好。

在 ICLR 2019 的論文 Pay Less Attention with Lightweight and Dynamic Convolutions 中,研究者對自注意力機(jī)制在長期依賴性的建模中,參數(shù)的有效性和效率提出了質(zhì)疑,他們表示一個受自注意力啟發(fā)而得到的卷積變體,其參數(shù)效率更高。

輕量級卷積(lightweight convolutions)是深度可分離(depthwise-separable)的,它在時間維度上進(jìn)行了 softmax 標(biāo)準(zhǔn)化,通道維度上共享權(quán)重,且在每個時間步上重新使用相同權(quán)重(類似于 RNN 網(wǎng)絡(luò))。動態(tài)卷積(dynamic convolutions)則是在每個時間步上使用不同權(quán)重的輕量級卷積。

這些技巧使得輕量級卷積和動態(tài)卷積相較于傳統(tǒng)的不可分卷積,在效率上優(yōu)越幾個數(shù)量級。

研究者也證明,在機(jī)器翻譯、語言建模和抽象總結(jié)等任務(wù)上,這些新卷積能夠使用數(shù)量相當(dāng)或更少的參數(shù),達(dá)到或超過基于自注意力的基準(zhǔn)效果。

謠傳六:圖像數(shù)據(jù)集反映了自然世界真實圖像分布

我們可能會認(rèn)為,如今的神經(jīng)網(wǎng)絡(luò)在目標(biāo)識別任務(wù)上,效果已經(jīng)超出真人水平。這并不正確。在 ImageNet 等篩選出來的圖像數(shù)據(jù)集上,它們的效果可能確實優(yōu)于真人。但對于自然世界的真實圖像,它們在目標(biāo)識別上絕對無法比正常成年人做得更加出色。這是因為,從目前的圖像數(shù)據(jù)集中抽取的圖像,和從真實世界整體中抽取的圖像并不一樣,二者分布并不相同。

這里有一篇 2011 年比較老的論文: Unbiased Look at Dataset Bias,其中,研究者根據(jù) 12 個流行的圖像數(shù)據(jù)集,嘗試通過訓(xùn)練一個分類器用以判斷一個給定圖像來自于哪個數(shù)據(jù)集,來探索是否存在數(shù)據(jù)集偏差。

隨機(jī)猜測的正確率應(yīng)該是 1/12 = 8%,而實驗結(jié)果的準(zhǔn)確率高于 75%。

研究者在 HOG 特征上訓(xùn)練了一個 SVM,并發(fā)現(xiàn)其正確率達(dá)到 39%,高于隨機(jī)猜測水平。如今,如果使用最先進(jìn)的 CNN 來復(fù)現(xiàn)這一實驗,很可能得到更好的分類器效果。

如果圖像數(shù)據(jù)集確實能夠表征來自自然世界的真實圖像,就不應(yīng)能夠分辨出某個特定圖像是來自于哪個數(shù)據(jù)集的。

但數(shù)據(jù)中的偏差,使得每個數(shù)據(jù)集變得可識別。例如,在 ImageNet 中,有非常多的「賽車」,不能認(rèn)為這代表了通常意義上「汽車」的理想概念。

研究者在某數(shù)據(jù)集訓(xùn)練分類器,并在其他數(shù)據(jù)集上評估表現(xiàn)效果,進(jìn)一步度量數(shù)據(jù)集的價值。根據(jù)這個指標(biāo),LabelMe 和 ImageNet 是偏差最小的數(shù)據(jù)集,在「一籃子貨幣(basket of currencies)」上得分 0.58。所有數(shù)據(jù)集的得分都小于 1,表明在其他數(shù)據(jù)集上訓(xùn)練的模型都給出了更低的準(zhǔn)確度。在沒有數(shù)據(jù)集偏差的理想情況下,應(yīng)該有一些得分是高于 1 的。

謠傳七:顯著圖(saliency maps)是解釋神經(jīng)網(wǎng)絡(luò)的一個穩(wěn)健方法。

雖然神經(jīng)網(wǎng)絡(luò)通常被認(rèn)為是黑箱模型,現(xiàn)在還是已經(jīng)有了有非常多對其進(jìn)行解釋的探索。顯著圖,或其他類似對特征或訓(xùn)練樣本賦予重要性得分的方法,是其中最受歡迎的形式。

能夠?qū)D像進(jìn)行特定分類的理由,總結(jié)為圖像特定部分對模型決策過程中起的作用,是一個非常誘人的課題。已有的幾種計算顯著圖的方法,通常都基于神經(jīng)網(wǎng)絡(luò)在特定圖像上的激活情況,以及網(wǎng)絡(luò)中所傳播的梯度。

在 AAAI 2019 的一篇論文 Interpretation of Neural Networks is Fragile 中,研究者表明,可以通過引入一個無法感知的擾動,來破壞一個特定圖像的顯著圖。

「帝王蝶之所以被分類為帝王蝶,并不是因為翅膀的圖案樣式,而是因為背景上一些不重要的綠色樹葉?!?/p>

高維圖像通常都位于深度神經(jīng)網(wǎng)絡(luò)所建立的決策邊界附近,因此很容易受到對抗攻擊的影響。對抗攻擊會將圖像移動至決策邊界的另一邊,而對抗解釋攻擊則是將圖像在相同決策區(qū)域內(nèi),沿著決策邊界等高線移動。

為實現(xiàn)此攻擊,研究者所使用的基本方法是Goodfellow提出的 FGSM(fast gradient sign method)方法的變體,這是最早的一種為實現(xiàn)有效對抗攻擊而引入的方法。這也表明,其他更近的、更復(fù)雜的對抗攻擊也可以用于攻擊神經(jīng)網(wǎng)絡(luò)的解釋性。

意義:隨著深度學(xué)習(xí)越來越普遍地應(yīng)用于高風(fēng)險場景,如醫(yī)學(xué)成像,對于如何解釋神經(jīng)網(wǎng)絡(luò)所做的結(jié)論也越發(fā)重要。例如,雖然 CNN 網(wǎng)絡(luò)將 MRI 圖像上的小點(diǎn)識別為惡性致癌腫瘤是非常好的事情,但如果它們是基于非常脆弱的解釋方法,那么也不應(yīng)姑妄信之。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8320

    瀏覽量

    132165
  • tensorflow
    +關(guān)注

    關(guān)注

    13

    文章

    328

    瀏覽量

    60444

原文標(biāo)題:機(jī)器學(xué)習(xí)的七大謠傳,這都是根深蒂固的執(zhí)念吧

文章出處:【微信號:CAAI-1981,微信公眾號:中國人工智能學(xué)會】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    VisionChina2024(深圳)七大議題引領(lǐng)視覺技術(shù)跨界融合,部分論壇議程搶先看!

    。 ? VisionChina 2024(深圳)精心策劃了 七大前沿議題 ,融入 “Vision Plus X” 創(chuàng)新理念,旨在深化機(jī)器視覺技術(shù)的核心展示,并拓寬其應(yīng)用場景與解決方案的邊界。通過領(lǐng)先的融合技術(shù)解決方案,助力企業(yè)在 3C電子、半導(dǎo)體制造檢測、新能源、智能物流
    發(fā)表于 09-24 11:56 ?193次閱讀
    VisionChina2024(深圳)<b class='flag-5'>七大</b>議題引領(lǐng)視覺技術(shù)跨界融合,部分論壇議程搶先看!

    放大電路中常見的噪聲有哪些

    在放大電路中,噪聲是一個不可忽視的問題,它會影響信號的純凈度和系統(tǒng)的性能。放大電路中的噪聲來源廣泛,包括電路元件本身、外部環(huán)境以及電路設(shè)計等多個方面。以下將詳細(xì)闡述放大電路中常見的噪聲類型,并探討其產(chǎn)生原因和特性。
    的頭像 發(fā)表于 09-03 14:03 ?301次閱讀

    機(jī)器人視覺技術(shù)中常見的圖像分割方法

    機(jī)器人視覺技術(shù)中的圖像分割方法是一個廣泛且深入的研究領(lǐng)域。圖像分割是將圖像劃分為多個區(qū)域或?qū)ο蟮倪^程,這些區(qū)域或?qū)ο缶哂心撤N共同的特征,如顏色、紋理、形狀等。在機(jī)器人視覺中,圖像分割對于物體識別
    的頭像 發(fā)表于 07-09 09:31 ?328次閱讀

    甲烷濃度檢測儀中常見的檢測技術(shù)及其應(yīng)用

    甲烷濃度檢測儀中常見的檢測技術(shù)及其應(yīng)用
    的頭像 發(fā)表于 07-08 10:47 ?428次閱讀
    甲烷濃度檢測儀<b class='flag-5'>中常見</b>的檢測技術(shù)及其應(yīng)用

    機(jī)器學(xué)習(xí)算法原理詳解

    機(jī)器學(xué)習(xí)作為人工智能的一個重要分支,其目標(biāo)是通過讓計算機(jī)自動從數(shù)據(jù)中學(xué)習(xí)并改進(jìn)其性能,而無需進(jìn)行明確的編程。本文將深入解讀幾種常見機(jī)器
    的頭像 發(fā)表于 07-02 11:25 ?531次閱讀

    博泰車聯(lián)網(wǎng)獲七大銀行百億授信

    近日,博泰車聯(lián)網(wǎng)成功與中國工商銀行、中國建設(shè)銀行、中國銀行、上海銀行、交通銀行、興業(yè)銀行、招商銀行七大銀行簽署了授信戰(zhàn)略合作協(xié)議,累計獲得高達(dá)190億元的授信額度。同時,國泰君安也與博泰車聯(lián)網(wǎng)簽署了戰(zhàn)略合作協(xié)議,為博泰的未來發(fā)展提供進(jìn)一步的助力。
    的頭像 發(fā)表于 03-29 09:23 ?487次閱讀

    變壓器運(yùn)行中常見的異?,F(xiàn)象應(yīng)如何處理呢?

    變壓器運(yùn)行中常見的異常現(xiàn)象應(yīng)如何處理?
    的頭像 發(fā)表于 03-08 09:19 ?543次閱讀
    變壓器運(yùn)行<b class='flag-5'>中常見</b>的異?,F(xiàn)象應(yīng)如何處理呢?

    數(shù)字化轉(zhuǎn)型浪潮中的挑戰(zhàn)與機(jī)遇:企業(yè)如何應(yīng)對七大難點(diǎn)

    隨著技術(shù)的日益進(jìn)步,企業(yè)數(shù)字化轉(zhuǎn)型已成為推動商業(yè)模式創(chuàng)新和運(yùn)營優(yōu)化的關(guān)鍵。盡管數(shù)字化轉(zhuǎn)型提供了無限的可能性,但過程中的難點(diǎn)同樣不容小覷。下面,我們將逐一剖析企業(yè)轉(zhuǎn)型中的七大難點(diǎn),并提供相應(yīng)的應(yīng)對策略。
    的頭像 發(fā)表于 01-10 14:57 ?428次閱讀

    伺服電機(jī)應(yīng)用中常見干擾類型和產(chǎn)生途徑

    伺服電機(jī)應(yīng)用中常見干擾類型和產(chǎn)生途徑
    的頭像 發(fā)表于 01-07 17:56 ?1278次閱讀

    電氣設(shè)計中常見的電磁技術(shù),你了解多少?

    電氣設(shè)計中常見的電磁技術(shù),你了解多少?
    的頭像 發(fā)表于 12-07 14:29 ?1046次閱讀
    電氣設(shè)計<b class='flag-5'>中常見</b>的電磁技術(shù),你了解多少?

    線程池七大核心參數(shù)執(zhí)行順序

    線程池是一種用于管理和調(diào)度線程執(zhí)行的技術(shù),通過將任務(wù)分配到線程池中的線程進(jìn)行處理,可以有效地控制并發(fā)線程的數(shù)量,提高系統(tǒng)的資源利用率和任務(wù)處理效率。在使用線程池之前,我們需要了解線程池的七大核心參數(shù)
    的頭像 發(fā)表于 12-04 16:45 ?865次閱讀

    PCB設(shè)計中常見的走線等長要求

    PCB設(shè)計中常見的走線等長要求
    的頭像 發(fā)表于 11-24 14:25 ?2837次閱讀
    PCB設(shè)計<b class='flag-5'>中常見</b>的走線等長要求

    全面總結(jié)機(jī)器學(xué)習(xí)中的優(yōu)化算法

    幾乎所有的機(jī)器學(xué)習(xí)算法最后都?xì)w結(jié)為求一個目標(biāo)函數(shù)的極值,即最優(yōu)化問題,例如對于有監(jiān)督學(xué)習(xí),我們要找到一個最佳的映射函數(shù)f (x),使得對訓(xùn)練樣本的損失函數(shù)最小化(最小化經(jīng)驗風(fēng)險或結(jié)構(gòu)風(fēng)險)。
    發(fā)表于 11-02 10:18 ?380次閱讀
    全面<b class='flag-5'>總結(jié)</b><b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>中的優(yōu)化算法

    接線端子在使用中常見的故障及解決方案

    電子發(fā)燒友網(wǎng)站提供《接線端子在使用中常見的故障及解決方案.doc》資料免費(fèi)下載
    發(fā)表于 11-01 11:00 ?0次下載
    接線端子在使用<b class='flag-5'>中常見</b>的故障及解決方案

    電路布線的七大原則

    電路布線的七大原則? 電路布線是電子設(shè)計中非常重要的一環(huán),它直接影響著電路的性能和穩(wěn)定性。因此,在進(jìn)行電路布線的時候,需要遵循七大原則,這些原則包括電磁兼容性、信號傳輸、電源噪聲、熱管理、機(jī)械可靠性
    的頭像 發(fā)表于 10-27 10:26 ?1148次閱讀