0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

現(xiàn)代主要的醫(yī)療成像系統(tǒng)

電機控制設(shè)計加油站 ? 來源:xx ? 2019-03-23 09:04 ? 次閱讀

Wilhelm Conrad R?tgen于1895年發(fā)現(xiàn)了X射線,讓他獲得了第一個諾貝爾物理學(xué)獎,也為醫(yī)療成像領(lǐng)域奠定了基礎(chǔ)。自那以后,X射線技術(shù)已經(jīng)發(fā)展成為一門廣泛的科學(xué)學(xué)科,從最廣泛的意義上說,它是指眾多用于人體內(nèi)部的無創(chuàng)可視化技術(shù)。

本文討論一些主要的現(xiàn)代醫(yī)療成像系統(tǒng),這些系統(tǒng)雖然運用完全不同的物理原理和處理技術(shù),但都有一個共同點:采用模擬數(shù)據(jù)采集前端進(jìn)行信號調(diào)理,并將原始成像數(shù)據(jù)轉(zhuǎn)換到數(shù)字域。

這個微小的前端功能模塊雖然深藏于復(fù)雜機器內(nèi)部,但其性能卻會對整個系統(tǒng)的最終圖像質(zhì)量產(chǎn)生至關(guān)重要的影響。它的信號鏈包括一個檢測元件、一個低噪聲放大器(LNA)、一個濾波器和一個模數(shù)轉(zhuǎn)換器(ADC),而后者為本文討論的主題。

在醫(yī)療成像領(lǐng)域的電子設(shè)計中,數(shù)據(jù)轉(zhuǎn)換器的動態(tài)范圍、分辨率、精度、線性度和噪聲要求帶來了最嚴(yán)苛的挑戰(zhàn)。本文討論在不同成像模式環(huán)境中的這些設(shè)計挑戰(zhàn),并概述了能夠?qū)崿F(xiàn)最佳工作性能的高級數(shù)據(jù)轉(zhuǎn)換器和集成解決方案。

數(shù)字射線照相

數(shù)字射線照相(DR)的物理原理與所有傳統(tǒng)的吸收式射線照相系統(tǒng)相同。穿過人體的X射線經(jīng)過具有不同射線穿透性的人體組織衰減并投射在平板探測器系統(tǒng)上,其原理如圖1所示。探測器將X射線光子轉(zhuǎn)換為與入射粒子能量成正比的電荷。生成的電信號經(jīng)放大并轉(zhuǎn)換到數(shù)字域中,以產(chǎn)生X射線圖像的精確數(shù)字表示。其圖像質(zhì)量取決于空間與強度維度中的信號采樣。

在空間維度中,最小采樣速率由探測器的像素矩陣大小和實時熒光透視成像的更新速率定義。具有數(shù)百萬像素和典型更新速率高達(dá)25 fps至30 fps的平板探測器采用通道多路復(fù)用和多個ADC,采樣速率高達(dá)數(shù)十MSPS,可在不犧牲精度的情況下滿足最短轉(zhuǎn)換時間要求。

在強度維度中,ADC的數(shù)字輸出信號代表在特定曝光時間內(nèi)給定像素所吸收的X射線光子的積分量。該值被分組為由ADC的位深度定義的離散電平的有限數(shù)值。另一個重要參數(shù)是信噪比(SNR),它定義了系統(tǒng)忠實地表示成像人體的解剖學(xué)特征的內(nèi)在能力。數(shù)字X射線系統(tǒng)采用14位至18位ADC,SNR水平范圍為70 dB至100 dB,具體取決于成像系統(tǒng)的類型及其要求。有各種各樣的離散ADC和集成模擬前端,可使各種類型的DR成像系統(tǒng)具有更高的動態(tài)范圍、更精細(xì)的分辨率、更高的檢測效率和更低的噪聲。

圖1. 數(shù)字X射線探測器信號鏈。

計算機斷層掃描

計算機斷層掃描(CT)同樣采用電離輻射技術(shù),但與數(shù)字X射線技術(shù)不同的是,它基于扇型探測器系統(tǒng),與X射線源同步旋轉(zhuǎn),并利用更復(fù)雜的處理技術(shù)生成血管、軟組織等的高分辨率3D圖像。

CT探測器是整個系統(tǒng)架構(gòu)的核心組件,它實際上是CT系統(tǒng)的心臟。它由多個模塊組成,如圖2所示。每個模塊將入射的X射線轉(zhuǎn)換為電信號,并路由到多通道模擬數(shù)據(jù)采集系統(tǒng)(ADAS)。每個模塊都包含一個閃爍晶體陣列、一個光電二極管陣列和含有多路復(fù)用至ADC的多個積分器通道的ADAS。ADAS必須具有極低的噪聲性能,以保持良好的空間分辨率,降低X射線劑量,并具有極低的電流輸出以實現(xiàn)高動態(tài)范圍性能。為了避免圖像偽影并確保良好的對比度,轉(zhuǎn)換器前端必須具有出色的線性度性能并可提供低功耗工作模式,以降低熱敏型探測器的冷卻要求。

ADC必須具有至少24位的高分辨率才能獲得更優(yōu)質(zhì)、更清晰的圖像,同時還要具有快速采樣速率(短至100 μs),以便數(shù)字化探測器讀數(shù)。ADC采樣速率還必須支持多路復(fù)用,這樣就可以使用較少數(shù)量的轉(zhuǎn)換器,并且減小整個系統(tǒng)的尺寸和功耗。

正電子發(fā)射斷層掃描

正電子發(fā)射斷層掃描(PET)涉及由引入人體的放射性核素產(chǎn)生的電離輻射。它發(fā)射的正電子與組織中的電子碰撞,產(chǎn)生輻射方向大體相反的伽馬射線對。這些高能光子對同時撞擊相對的PET探測器,它們圍繞著支架口呈環(huán)狀排列。

PET探測器(如圖3所示)由一系列閃爍晶體和光電倍增管(PMT)組成,它們將伽馬射線轉(zhuǎn)換為電流,繼而轉(zhuǎn)換為電壓,然后通過可變增益放大器(VGA)放大并補償幅度變化。然后將產(chǎn)生的信號在ADC和比較器路徑之間分離,以提供能量和時序信息,供PET重合處理器用于重建體內(nèi)放射性示蹤劑濃度的3D圖像。

圖2. CT探測器模塊信號鏈。

圖3. PET電子前端信號鏈。

如果兩個光子的能量約為511 keV,并且其探測時間相差不到十億分之一秒,則它們可被歸類為相關(guān)光子。光子的能量和探測時間差對ADC提出了嚴(yán)格的要求,ADC必須具有10至12位的高分辨率,并且快速采樣速率通常需高于40 MSPS。低噪聲性能可最大程度地擴(kuò)大動態(tài)范圍,而低功耗工作模式則可減少散熱,這兩點對于PET成像也很重要。

磁共振成像

磁共振成像(MRI)是一種無創(chuàng)醫(yī)療成像技術(shù),它依賴于核磁共振現(xiàn)象,并且無需使用電離輻射,這使之有別于DR、CT和PET系統(tǒng)。MR信號的載波頻率直接與主磁場強度成比例,其商用掃描儀頻率范圍為12.8 MHz至298.2 MHz。信號帶寬由頻率編碼方向的視場定義,變化范圍從幾kHz到幾十kHz。

這對接收器前端提出了特殊的要求,該前端通?;诰哂休^低速率SAR ADC的超外差式架構(gòu)(見圖4)。然而,模數(shù)轉(zhuǎn)換的最新進(jìn)展使快速低功耗多通道流水線ADC能夠在最常見的頻率范圍內(nèi)以16位深度、超過100 MSPS的轉(zhuǎn)換速率對MR信號直接進(jìn)行數(shù)字轉(zhuǎn)換。其動態(tài)范圍要求非常嚴(yán)苛,通常超過100 dB。通過對MR信號過采樣可以提高分辨率、增加SNR,并消除頻率編碼方向的混疊偽像,從而增強圖像質(zhì)量。為獲得快速掃描采集時間,可應(yīng)用基于欠采樣的壓縮檢測技術(shù)。

超聲波掃描術(shù)

超聲波掃描術(shù)或醫(yī)學(xué)超聲的物理原理與本文中討論的所有其他成像模式不同。它使用頻率范圍為1 MHz至18 MHz的聲波脈沖。這些聲波掃描人體內(nèi)部組織并以不同強度的回波進(jìn)行反射。實時獲取這些回波,并顯示為超聲波掃描圖,其中可能包含不同類型信息,如聲阻抗、血流量、組織隨時間的活動狀態(tài)或其僵硬程度。

醫(yī)療超聲前端(如圖5所示)的關(guān)鍵功能模塊由集成的多通道模擬前端(AFE)表示,它包括低噪聲放大器、可變增益放大器、抗混疊濾波器(AAF)、ADC和解調(diào)器。對AFE最重要的要求之一是動態(tài)范圍。根據(jù)成像模式,該要求可能需要達(dá)到70 dB至160 dB,以便區(qū)分血液信號與探頭和身體組織運動所產(chǎn)生的背景噪聲。因此,ADC必須具有高分辨率、高采樣速率和低總諧波失真(THD),以保持超聲信號的動態(tài)保真度。超聲前端的高通道密度還要求必須具有低功耗特性。面向醫(yī)療超聲設(shè)備提供的一系列集成式AFE可實現(xiàn)最佳圖像質(zhì)量,并降低功耗、系統(tǒng)尺寸和成本。

圖4. MRI超外差式接收器信號鏈。

結(jié)論

醫(yī)療成像對電子設(shè)計提出了極為嚴(yán)苛的要求。以低成本和緊湊的封裝提供低功耗、低噪聲、高動態(tài)范圍和高分辨率性能,是本文討論的現(xiàn)代醫(yī)療成像系統(tǒng)要求所決定的發(fā)展趨勢。ADI公司可滿足這些要求,為關(guān)鍵的信號鏈功能模塊提供高度集成的解決方案,推動實現(xiàn)一流的臨床成像設(shè)備,這些設(shè)備日益成為當(dāng)今國際醫(yī)療保健系統(tǒng)不可或缺的一部分。下列產(chǎn)品適用于本文提到的各種醫(yī)療成像模式。

* ADAS1256:這款高度集成的模擬前端包含256個通道,帶有低噪聲積分器、低通濾波器和相關(guān)雙采樣器(多路復(fù)用到高速16位ADC中)。它是一個完整的電荷-數(shù)字轉(zhuǎn)換解決方案,針對可直接安裝在數(shù)字X射線面板上的DR應(yīng)用而設(shè)計。* 針對分立式DR系統(tǒng),18位PulSAR? ADC AD7960提供99 dB的SNR和5 MSPS的采樣速率,可提供無與倫比的性能,以滿足最高動態(tài)范圍的噪聲和線性度要求。16位、雙通道AD9269和14位、16通道AD9249流水線ADC分別可提供高達(dá)80 MSPS和65 MSPS的采樣速率,以實現(xiàn)高速熒光透視系統(tǒng)。* ADAS1135和ADAS1134:這兩款高度集成的256通道和128通道數(shù)據(jù)采集系統(tǒng)由低噪聲/低功耗/低輸入電流積分器、同步采樣保持器件以及具有可配置采樣速率和最高24位分辨率的兩個高速ADC組成,提供出色的線性度,可最大限度地提高CT應(yīng)用的圖像質(zhì)量。* AD9228、AD9637、AD9219和AD9212:這幾款12位和10位多通道ADC的采樣速率從40 MSPS到80 MSPS,經(jīng)過優(yōu)化后具有出色的動態(tài)性能和低功耗,可滿足PET要求。* AD9656:這款16位、四通道流水線ADC提供高達(dá)125 MSPS的轉(zhuǎn)換速率,針對傳統(tǒng)的直接數(shù)字轉(zhuǎn)換MRI系統(tǒng)架構(gòu)進(jìn)行了優(yōu)化,具有出色的動態(tài)性能和低功耗特性。* AD9671:這款8通道集成式接收器前端專為低成本、低功耗的醫(yī)療超聲應(yīng)用而設(shè)計,采用14位ADC,采樣速率最高可達(dá)125 MSPS。每個通道都經(jīng)過優(yōu)化,在連續(xù)波模式下具有160dBFS/√Hz的高動態(tài)性能和62.5 mW的低功率,適合要求小尺寸封裝的應(yīng)用

圖5. 醫(yī)療超聲前端信號鏈。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 探測器
    +關(guān)注

    關(guān)注

    14

    文章

    2595

    瀏覽量

    72799
  • 超聲波
    +關(guān)注

    關(guān)注

    63

    文章

    2970

    瀏覽量

    138040

原文標(biāo)題:用于醫(yī)療成像系統(tǒng)的高性能數(shù)據(jù)轉(zhuǎn)換器

文章出處:【微信號:motorcontrol365,微信公眾號:電機控制設(shè)計加油站】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    遙感傳感器的主要成像投影方式有哪些

    之間存在一定的角度,成像時,傳感器的視場角覆蓋的區(qū)域會隨著距離的增加而擴(kuò)大。 應(yīng)用:航空攝影和一些衛(wèi)星成像系統(tǒng),如光學(xué)相機。 正射投影(Orthographic Projection) : 特點:在這種投影方式下,傳感器與地球表
    的頭像 發(fā)表于 09-04 14:23 ?204次閱讀

    解決醫(yī)療成像應(yīng)用中的電源設(shè)計難題

    電子發(fā)燒友網(wǎng)站提供《解決醫(yī)療成像應(yīng)用中的電源設(shè)計難題.pdf》資料免費下載
    發(fā)表于 09-04 10:26 ?0次下載
    解決<b class='flag-5'>醫(yī)療</b><b class='flag-5'>成像</b>應(yīng)用中的電源設(shè)計難題

    無人機機載高光譜成像系統(tǒng)的應(yīng)用及優(yōu)勢

      隨著無人機技術(shù)的快速發(fā)展,基于無人機平臺的高光譜成像系統(tǒng)在多個領(lǐng)域中得到了廣泛應(yīng)用。本文將介紹一款小型多旋翼無人機機載高光譜成像系統(tǒng),該系統(tǒng)
    的頭像 發(fā)表于 08-15 15:03 ?395次閱讀
    無人機機載高光譜<b class='flag-5'>成像</b><b class='flag-5'>系統(tǒng)</b>的應(yīng)用及優(yōu)勢

    國產(chǎn)ADC兼容AD7193用于成像醫(yī)療設(shè)備

    國產(chǎn)ADC兼容AD7193用于成像醫(yī)療設(shè)備
    的頭像 發(fā)表于 06-07 10:10 ?333次閱讀
    國產(chǎn)ADC兼容AD7193用于<b class='flag-5'>成像</b><b class='flag-5'>醫(yī)療</b>設(shè)備

    紅外熱成像助力現(xiàn)代化智慧養(yǎng)殖

    主要優(yōu)點在于,我們可以全天候?qū)崟r檢測養(yǎng)豬場的溫度,并設(shè)置溫度報警閾值。一旦檢測到異常溫度,系統(tǒng)會立即觸發(fā)報警,通知值班人員迅速進(jìn)行處理,從而最大限度地減少疾病的蔓
    的頭像 發(fā)表于 05-16 17:22 ?178次閱讀
    紅外熱<b class='flag-5'>成像</b>助力<b class='flag-5'>現(xiàn)代</b>化智慧養(yǎng)殖

    訊維融合處理器助力醫(yī)院構(gòu)建現(xiàn)代醫(yī)療監(jiān)控系統(tǒng)

    隨著醫(yī)療技術(shù)的不斷進(jìn)步和醫(yī)院管理要求的日益嚴(yán)格,構(gòu)建一套高效、穩(wěn)定、智能的醫(yī)療監(jiān)控系統(tǒng)已成為醫(yī)院現(xiàn)代化建設(shè)的迫切需求。在這一背景下,訊維融合處理器以其卓越的性能和獨特的功能,為醫(yī)院構(gòu)建
    的頭像 發(fā)表于 04-01 16:31 ?280次閱讀
    訊維融合處理器助力醫(yī)院構(gòu)建<b class='flag-5'>現(xiàn)代</b>化<b class='flag-5'>醫(yī)療</b>監(jiān)控<b class='flag-5'>系統(tǒng)</b>

    可編程振蕩器助力醫(yī)療成像提供準(zhǔn)確時序,兼容SiTime

    可編程振蕩器助力醫(yī)療成像提供準(zhǔn)確時序,兼容SiTime
    的頭像 發(fā)表于 03-18 10:13 ?339次閱讀
    可編程振蕩器助力<b class='flag-5'>醫(yī)療</b><b class='flag-5'>成像</b>提供準(zhǔn)確時序,兼容SiTime

    紅外熱成像技術(shù)在醫(yī)療健康領(lǐng)域的應(yīng)用

    你有沒有思考過為何我們在醫(yī)療健康領(lǐng)域越來越頻繁地看到紅外熱成像技術(shù)的蹤影?這并不是偶然,因為這項科技的獨特優(yōu)點和巨大潛力已經(jīng)引起了醫(yī)療專家們的注目。讓我們一起深入探討一下這個主題,去理解這項技術(shù)
    的頭像 發(fā)表于 03-06 11:04 ?461次閱讀
    紅外熱<b class='flag-5'>成像</b>技術(shù)在<b class='flag-5'>醫(yī)療</b>健康領(lǐng)域的應(yīng)用

    比較分析:便攜式高光譜成像系統(tǒng)與傳統(tǒng)成像技術(shù)

    現(xiàn)代科學(xué)技術(shù)的探索中,便攜式高光譜成像系統(tǒng)與傳統(tǒng)成像技術(shù)的比較分析揭示了兩者在捕捉和解析大自然色彩方面的獨特優(yōu)勢和局限。作為科學(xué)研究和環(huán)境監(jiān)測的重要工具,便攜式高光譜
    的頭像 發(fā)表于 01-10 10:58 ?444次閱讀
    比較分析:便攜式高光譜<b class='flag-5'>成像</b><b class='flag-5'>系統(tǒng)</b>與傳統(tǒng)<b class='flag-5'>成像</b>技術(shù)

    現(xiàn)代獨立顯卡電力消耗的主要原因

    現(xiàn)代獨立顯卡電力消耗的主要原因 近年來,隨著科技的不斷發(fā)展和人們對高畫質(zhì)游戲和圖形處理需求的增加,獨立顯卡已經(jīng)成為電腦的必備硬件之一。然而,獨立顯卡的電力消耗問題也逐漸浮出水面。本文將詳細(xì)探討現(xiàn)代
    的頭像 發(fā)表于 01-09 13:52 ?452次閱讀

    醫(yī)療廢物智能管理系統(tǒng)主要特色

    醫(yī)療廢物智能管理系統(tǒng)主要特色 醫(yī)療廢物是一種高危垃圾,如果處理不當(dāng),將會對環(huán)境和公眾健康造成嚴(yán)重威脅。當(dāng)前醫(yī)療廢物管理存在許多技術(shù)上的不足
    的頭像 發(fā)表于 12-15 16:39 ?357次閱讀
    <b class='flag-5'>醫(yī)療</b>廢物智能管理<b class='flag-5'>系統(tǒng)</b>的<b class='flag-5'>主要</b>特色

    醫(yī)療成像應(yīng)用指南

    電子發(fā)燒友網(wǎng)站提供《醫(yī)療成像應(yīng)用指南.pdf》資料免費下載
    發(fā)表于 11-16 09:53 ?2次下載
    <b class='flag-5'>醫(yī)療</b><b class='flag-5'>成像</b>應(yīng)用指南

    基于FPGA的醫(yī)療成像算法開發(fā)

    簡介:采用FPGA 實現(xiàn)醫(yī)療成像采用 FPGA 實現(xiàn)醫(yī)療成像 WP-MEDICAL-2.0 白皮書 醫(yī)療保健行業(yè)的發(fā)展趨勢是通過非置入手段來
    發(fā)表于 11-09 08:31 ?0次下載
    基于FPGA的<b class='flag-5'>醫(yī)療</b><b class='flag-5'>成像</b>算法開發(fā)

    醫(yī)療圖像處理的關(guān)鍵領(lǐng)域及技術(shù)挑戰(zhàn)

    醫(yī)療圖像處理的最后一部分涉及對所獲取信息的管理,包括用于圖像數(shù)據(jù)存儲、檢索和傳輸?shù)母鞣N技術(shù)。制定了若干標(biāo)準(zhǔn)和技術(shù),用于處理圖像管理的各個方面。例如,醫(yī)療成像技術(shù)圖像存檔與傳輸系統(tǒng)(PA
    發(fā)表于 10-31 11:43 ?690次閱讀
    <b class='flag-5'>醫(yī)療</b>圖像處理的關(guān)鍵領(lǐng)域及技術(shù)挑戰(zhàn)

    超聲紅外熱成像技術(shù)原理與系統(tǒng)組成

    超聲紅外熱成像系統(tǒng)一般包括超聲激勵源、紅外圖像采集系統(tǒng)、紅外圖像處理系統(tǒng);超聲激勵源包括超聲電源、超聲換能器、超聲槍,紅外采集系統(tǒng)
    發(fā)表于 10-26 11:34 ?581次閱讀
    超聲紅外熱<b class='flag-5'>成像</b>技術(shù)原理與<b class='flag-5'>系統(tǒng)</b>組成