0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電感器的符號(hào)及時(shí)間常數(shù)

模擬對話 ? 來源:x'x ? 2019-06-24 08:57 ? 次閱讀

電感器是一種無源電氣元件,由線圈組成,設(shè)計(jì)用于利用電流通過線圈的方式與電力和電力之間的關(guān)系.

在我們關(guān)于電磁學(xué)教程中,我們看到當(dāng)電流流過導(dǎo)線時(shí),在導(dǎo)體周圍產(chǎn)生磁通量。這種影響產(chǎn)生了圍繞導(dǎo)體循環(huán)的磁通方向與流過同一導(dǎo)體的電流方向之間的關(guān)系。這導(dǎo)致了電流和磁通量方向之間的關(guān)系,稱為“弗萊明的右手規(guī)則”。

但是還存在與纏繞線圈相關(guān)的另一個(gè)重要特性,即二次電壓是通過磁通量的移動(dòng)引入相同的線圈,因?yàn)樗磳虻挚沽鬟^它的電流的任何變化。

典型的電感

在最基本的形式中,電感器只不過是纏繞在中心核心周圍的線圈。對于大多數(shù)線圈而言,流過線圈的電流( i )會(huì)在其周圍產(chǎn)生一個(gè)磁通量(NΦ),與該電流流量成正比。

電感器,也稱為扼流圈,是另一種無源型電氣元件,由一個(gè)線圈組成,設(shè)計(jì)用于通過在其自身或其核心內(nèi)感應(yīng)磁場來利用這種關(guān)系。電流流過線圈的結(jié)果。將線圈形成電感器會(huì)產(chǎn)生比由簡單線圈產(chǎn)生的線圈強(qiáng)得多的磁場。

電感器由緊密纏繞在實(shí)心中心核心周圍的導(dǎo)線形成,可以是一個(gè)直的圓柱形桿或一個(gè)連續(xù)的環(huán)或環(huán)來集中它們的磁通量。

電感器的原理圖符號(hào)是一個(gè)線圈的符號(hào),因此,一個(gè)線圈也可以稱為電感的。電感器通常根據(jù)它們纏繞的內(nèi)芯類型進(jìn)行分類,例如,空芯(自由空氣),實(shí)心鐵芯或軟鐵氧體磁芯,不同的磁芯類型通過在旁邊添加連續(xù)或虛線平行線來區(qū)分。線圈如下圖所示。

電感符號(hào)

當(dāng)前,流經(jīng)電感器的i 產(chǎn)生與其成比例的磁通量。但不像電容器反對電路板上的電壓變化,電感器反對由于磁場內(nèi)自感能量的積累而流過電流的電流變化率。

字,電感器抵抗或反對電流的變化,但很容易通過穩(wěn)態(tài)直流電流。電感器抵抗電流變化的能力以及電流 i 與其磁通量,NΦ作為比例常數(shù)的關(guān)系稱為電感在Joseph Henry之后給出符號(hào)L,單位為亨利,(H)。

因?yàn)楹嗬旧砭褪且粋€(gè)相對較大的電感單位,對于較小的電感器,亨利的子單元用于表示其值。例如:

電感前綴

前綴 符號(hào) 乘數(shù) 10的冪
milli m 1 / 1,000 10 -3
μ 1 /百萬 10 -6
納米 名詞 1 /十億 10 -9

因此,要顯示亨利的子單位,我們將以此為例: / p>

1mH = 1 milli-Henry - 等于亨利的千分之一(1/1000)。

100μH= 100微亨利 - 等于1百萬分之一(1 / 1,000,000)亨利。

電感器或線圈在電路中非常常見有許多因素決定了線圈的電感,例如線圈的形狀,絕緣的匝數(shù)電線,電線層數(shù),匝間距,芯材的磁導(dǎo)率,磁芯的尺寸或橫截面積等等,僅舉幾例。

電感線圈有中心核心區(qū)域( A ),每單位長度具有恒定的線圈數(shù)( l )。因此,如果 N 圈的線圈通過一定量的磁通量連接,Φ則線圈具有NΦ的磁鏈和任何電流流過線圈的( i )將在與電流相反的方向上產(chǎn)生感應(yīng)磁通量。然后根據(jù)法拉第定律,這個(gè)磁通鏈的任何變化都會(huì)在單個(gè)線圈中產(chǎn)生自感電壓:

其中:

N 是轉(zhuǎn)數(shù)

A 是以m為單位的橫截面積 2

Φ是Webers中的流量

μ是滲透率核心材料

l 是以米為單位的線圈長度

di / dt 是電流的安培變化率/秒

時(shí)變磁場感應(yīng)的電壓與產(chǎn)生電流的電流的變化率成正比,其中正值表示電動(dòng)勢增加,負(fù)值表示減少在emf。通過用 L 代替μN(yùn) 2 A / l ,可以找到與自感應(yīng)電壓,電流和電感相關(guān)的公式,表示常數(shù)比例性稱為線圈的電感。

電感中的磁通與流過電感的電流之間的關(guān)系如下:NΦ= Li 。由于電感器由一個(gè)導(dǎo)線線圈組成,然后減少上述方程式,得到自感應(yīng)電動(dòng)勢,有時(shí)也稱為線圈中感應(yīng)的反電動(dòng)勢:

返回電感由電感生成

其中: L 是自感和 di / dt 當(dāng)前變化的速度。

電感線圈

所以從這個(gè)等式中我們可以說“自感電動(dòng)勢=電流變化電流”和電路的電感為1亨利將在電路中感應(yīng)出一伏電壓,當(dāng)流過電路的電流以每秒一安培的速率變化時(shí)。

關(guān)于上述等式的一個(gè)重要注意事項(xiàng)。它只是將電感器兩端產(chǎn)生的電動(dòng)勢與電流的變化聯(lián)系起來,因?yàn)槿绻姼须娏鞯牧髁渴呛愣ǖ牟⑶覜]有變化,例如在穩(wěn)態(tài)直流電流中,那么感應(yīng)的電動(dòng)勢電壓將為零,因?yàn)樗矔r(shí)電流變化率是零, di / dt = 0 。

當(dāng)穩(wěn)態(tài)直流電流流過電感器并因此在其上產(chǎn)生零感應(yīng)電壓時(shí),電感器充當(dāng)?shù)扔谝粭l線的短路,或者至少是非常低的電阻值。換句話說,電感器提供的電流流動(dòng)的反對在交流和直流電路之間是非常不同的。

電感的時(shí)間常數(shù)

我們現(xiàn)在知道電流不能在電感中瞬間改變,因?yàn)橐l(fā)生這種情況,電流需要在零時(shí)間內(nèi)改變一個(gè)有限的量,這將導(dǎo)致電流變化率無限, di / dt = ∞,使得感應(yīng)電動(dòng)勢也是無限的,并且不存在無限電壓。但是,如果流過電感的電流變化非常快,例如開關(guān)的操作,則可以在電感線圈上感應(yīng)出高電壓。

考慮右側(cè)電感的電路。通過開關(guān)( S1 )打開,沒有電流流過電感線圈。由于沒有電流流過電感,線圈中的電流變化率( di / dt )將為零。如果電流變化率為零,則電感線圈內(nèi)沒有自感電動(dòng)勢( V L = 0 )。

如果我們現(xiàn)在關(guān)閉開關(guān)(t = 0),電流將流過電路并以由電感器的電感確定的速率緩慢上升到其最大值。流過電感的電流速率乘以Henry的電感電感,導(dǎo)致線圈產(chǎn)生一些固定值的自感電動(dòng)勢,如上面的法拉第方程所確定的, V L = Ldi / dt 。

電感線圈上的這種自感電動(dòng)勢( V L )與施加的電壓作斗爭,直到電流達(dá)到最大值并達(dá)到穩(wěn)態(tài)條件。由于電流變化率( di / dt )在穩(wěn)定狀態(tài)下為零。換句話說,現(xiàn)在只存在線圈直流電阻以抵抗電流的流動(dòng)。

同樣,如果開關(guān),(S1)打開,流過線圈的電流將開始下降但電感將會(huì)再次對抗這種變化,并試圖通過在另一個(gè)方向上感應(yīng)電壓來保持電流流向其先前的值。下降的斜率將為負(fù),并與線圈的電感相關(guān),如下所示。

電感中的電流和電壓

電感器產(chǎn)生多少感應(yīng)電壓取決于電流變化率。在我們關(guān)于電磁感應(yīng)的教程中,Lenz定律指出:“感應(yīng)電動(dòng)勢的方向是這樣的,它總是會(huì)反對引起它的變化”。換句話說,感應(yīng)電動(dòng)勢將始終取代首先啟動(dòng)感應(yīng)電動(dòng)勢的運(yùn)動(dòng)或變化。

因此,隨著電流減小,電壓極性將充當(dāng)電源并且電流增加電壓極性將作為負(fù)載。因此,對于通過線圈的相同電流變化率,增加或減小感應(yīng)電動(dòng)勢的幅度將是相同的。

電感器示例No1

穩(wěn)態(tài)直流電4安培通過0.5H的電磁線圈。如果上述電路中的開關(guān)打開10mS并且流過線圈的電流降至零安培,那么線圈中感應(yīng)的反電動(dòng)勢電壓會(huì)是多少。

電感器中的功率

我們知道電路中的電感器通過它反對電流( i ),因?yàn)檫@個(gè)電流的流動(dòng)會(huì)引起電動(dòng)勢反對它,楞次定律。然后必須通過外部電池電源完成工作,以保持電流流過這個(gè)感應(yīng)電動(dòng)勢。用于強(qiáng)制電流( i )對抗這種自感電動(dòng)勢的瞬時(shí)功率( V L )從上面給出:

電路中的電源為, P = V * I 因此:

理想的電感器沒有電阻,因此R =0Ω,因此線圈內(nèi)沒有功率耗散,所以我們可以說理想電感器的功率損耗為零。

電感器中的能量

當(dāng)電源流入電感器時(shí),能量存儲(chǔ)在其磁場中。當(dāng)流過電感的電流增加且 di / dt 大于零時(shí),電路中的瞬時(shí)功率也必須大于零,( P> 0 )即正,這意味著能量存儲(chǔ)在電感中。

同樣,如果通過電感的電流減小且 di / dt 小于零,那么瞬時(shí)功率也必須小于零,( P <0 ),即負(fù)值,這意味著電感器將能量返回到電路中。然后通過積分上面的冪方程,總是正的,存儲(chǔ)在電感中的總磁能量如下:

由電感器存儲(chǔ)的能量

其中: W 以焦耳為單位, L 在Henries中, i 以安培為單位

能量實(shí)際上存儲(chǔ)在流過電感器的電磁場內(nèi)。在沒有電阻或電容的理想電感中,當(dāng)電流增加時(shí),能量流入電感并在其磁場中存儲(chǔ)而不會(huì)丟失,直到電流減小且磁場坍塌才會(huì)釋放。

然后在交流電,交流電路中,電感器不斷地存儲(chǔ)并在每個(gè)周期傳遞能量。如果流過電感的電流在直流電路中是恒定的,則存儲(chǔ)的能量沒有變化,因?yàn)?P = Li(di / dt)= 0 。

因此,電感器可以定義為無源元件,因?yàn)樗鼈兗饶艽鎯?chǔ)又能為電路提供能量,但它們不能產(chǎn)生能量。理想的電感器被歸類為損耗較少,這意味著它可以無限期地存儲(chǔ)能量,因?yàn)闆]有能量損失。

然而,實(shí)際電感器總是會(huì)有一些與線圈繞組相關(guān)的電阻以及電流流過時(shí)無論電流是交流還是恒定,由于歐姆定律( P = I 2 R ),電阻能量以熱量的形式損失。

然后,電感器的主要用途是濾波電路,諧振電路和電流限制??梢栽陔娐分惺褂秒姼衅鱽碜钃趸蛑厮芙涣麟娏骰蛞幌盗姓翌l率,并且在這個(gè)角色中,電感器可以用于“調(diào)諧”簡單的無線電接收器或各種類型的振蕩器。它還可以保護(hù)敏感設(shè)備免受破壞性電壓尖峰和高浪涌電流的影響。

在下一個(gè)關(guān)于電感器的教程中,我們將看到線圈的有效電阻稱為電感,而電感就像我們現(xiàn)在一樣知道電導(dǎo)體的特性“反對電流的變化”,可以是內(nèi)部感應(yīng)的,稱為自感或外部感應(yīng),稱為互感。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 線圈
    +關(guān)注

    關(guān)注

    14

    文章

    1799

    瀏覽量

    44289
  • 電感器
    +關(guān)注

    關(guān)注

    20

    文章

    2309

    瀏覽量

    70276
收藏 人收藏

    評論

    相關(guān)推薦

    什么是時(shí)間常數(shù)

    時(shí)間常數(shù)表示過渡反應(yīng)的時(shí)間過程的常數(shù)。指該物理量從最大值衰減到最大值的1/e所需要的時(shí)間。對于某一按指數(shù)規(guī)律衰變的量,其幅值衰變?yōu)?/e倍時(shí)所需的時(shí)
    發(fā)表于 09-13 07:01

    對電容和電感時(shí)間常數(shù)表達(dá)

    開關(guān)電源001–時(shí)間常數(shù)我們可以看到這是一個(gè)普通的RC串聯(lián)電路,但是我們可以以此退出對電容和電感時(shí)間常數(shù)的表達(dá)。時(shí)間常數(shù)是一個(gè)很重要的變量,在之后開關(guān)電源的很多地方有用,如RC串聯(lián)無
    發(fā)表于 12-31 06:07

    常用改進(jìn)時(shí)間常數(shù)的電路

    常用改進(jìn)時(shí)間常數(shù)的電路 常用改進(jìn)時(shí)間常數(shù)的電路
    發(fā)表于 04-08 18:13 ?987次閱讀
    常用改進(jìn)<b class='flag-5'>時(shí)間常數(shù)</b>的電路

    如何巧算時(shí)間常數(shù)RC

    如何巧算時(shí)間常數(shù)RC
    發(fā)表于 08-13 17:32 ?2424次閱讀
    如何巧算<b class='flag-5'>時(shí)間常數(shù)</b>RC

    如何計(jì)算時(shí)間常數(shù)RC

    如何計(jì)算時(shí)間常數(shù)RC 時(shí)間常數(shù)在電子線路中,特別是在脈沖電路中,是一個(gè)很重要的
    發(fā)表于 08-14 08:57 ?1.6w次閱讀

    RC電路充、放電過程仿真及時(shí)間常數(shù)的測定

    RC電路充、放電過程仿真及時(shí)間常數(shù)的測定和積分電路的仿真、微分電路的仿真、耦合電路的仿真。
    發(fā)表于 07-24 00:34 ?2.2w次閱讀
    RC電路充、放電過程仿真<b class='flag-5'>及時(shí)間常數(shù)</b>的測定

    電路時(shí)間常數(shù)怎么求

    表示過渡反應(yīng)的時(shí)間過程的常數(shù)。指該物理量從最大值衰減到最大值的1/e所需要的時(shí)間。對于某一按指數(shù)規(guī)律衰變的量,其幅值衰變?yōu)?/e倍時(shí)所需的時(shí)間稱為時(shí)
    發(fā)表于 11-15 12:57 ?19.9w次閱讀
    電路<b class='flag-5'>時(shí)間常數(shù)</b>怎么求

    開關(guān)電源001--時(shí)間常數(shù)

    開關(guān)電源001–時(shí)間常數(shù)我們可以看到這是一個(gè)普通的RC串聯(lián)電路,但是我們可以以此退出對電容和電感時(shí)間常數(shù)的表達(dá)。時(shí)間常數(shù)是一個(gè)很重要的變量,在之后開關(guān)電源的很多地方有用,如RC串聯(lián)無
    發(fā)表于 01-11 12:39 ?17次下載
    開關(guān)電源001--<b class='flag-5'>時(shí)間常數(shù)</b>

    RC時(shí)間常數(shù)的意思是什么?怎么算RC時(shí)間常數(shù)?RC時(shí)間常數(shù)的測量?

    RC時(shí)間常數(shù)的意思是什么?怎么算RC時(shí)間常數(shù)?RC時(shí)間常數(shù)的測量? RC時(shí)間常數(shù)是指電容(C)和電阻(R)串聯(lián)電路的響應(yīng)速度參數(shù)。它表示系統(tǒng)從初始狀態(tài)到達(dá)穩(wěn)定狀態(tài)所需的
    的頭像 發(fā)表于 11-20 16:46 ?1.3w次閱讀

    濾波時(shí)間常數(shù)怎么理解

    濾波是一種用于信號(hào)處理的設(shè)備,它可以去除信號(hào)中的噪聲和干擾,保留有用的信號(hào)。在濾波的設(shè)計(jì)和應(yīng)用中,時(shí)間常數(shù)是一個(gè)非常重要的參數(shù)。 時(shí)間常數(shù)的定義
    的頭像 發(fā)表于 07-26 09:14 ?1706次閱讀

    時(shí)間常數(shù)對暫態(tài)過程時(shí)間的影響有哪些

    闡述。 時(shí)間常數(shù)的定義和物理意義 時(shí)間常數(shù)通常用希臘字母τ(tau)表示,它是一個(gè)無量綱的量,用于描述系統(tǒng)對輸入信號(hào)的響應(yīng)速度。在一階線性時(shí)不變系統(tǒng)(如RC電路、RL電路等)中,時(shí)間常數(shù)τ等于系統(tǒng)內(nèi)部的電阻R與電容C或
    的頭像 發(fā)表于 07-26 09:24 ?807次閱讀

    時(shí)間常數(shù)越大衰減越快還是越慢

    1.1 定義 時(shí)間常數(shù)(Time Constant,通常用希臘字母τ表示)是一個(gè)描述系統(tǒng)在達(dá)到穩(wěn)態(tài)或平衡狀態(tài)時(shí),響應(yīng)速度的快慢的參數(shù)。在電子學(xué)中,時(shí)間常數(shù)通常用于描述電容或電感充放電的過程;在控制理論中,
    的頭像 發(fā)表于 07-26 09:47 ?1152次閱讀

    時(shí)間常數(shù)τ中的R是指什么

    時(shí)間常數(shù)τ是一個(gè)在電子學(xué)和控制系統(tǒng)中非常重要的概念。它描述了系統(tǒng)從初始狀態(tài)達(dá)到穩(wěn)態(tài)所需的時(shí)間。 1. 時(shí)間常數(shù)τ的基本概念 時(shí)間常數(shù)τ(tau)是一個(gè)度量系統(tǒng)響應(yīng)速度的參數(shù)。在電子學(xué)中
    的頭像 發(fā)表于 07-26 09:49 ?1489次閱讀

    鎖相放大器時(shí)間常數(shù)選擇

    ,是描述鎖相放大器中積分或低通濾波特性的一個(gè)參數(shù)。它決定了系統(tǒng)對輸入信號(hào)的響應(yīng)速度和噪聲抑制能力。時(shí)間常數(shù)越長,系統(tǒng)對噪聲的抑制能力越強(qiáng),但響應(yīng)速度會(huì)變慢;反之,時(shí)間常數(shù)越短,響應(yīng)
    的頭像 發(fā)表于 09-05 10:56 ?419次閱讀

    時(shí)間常數(shù)時(shí)的rc單位是什么

    時(shí)間常數(shù)(Time Constant)是電子學(xué)中的一個(gè)重要概念,它描述了電路中電容充電或放電到其最終值的63.2%所需的時(shí)間。在RC電路中,時(shí)間常數(shù)τ(tau)由電阻R和電容C的乘積決定,即
    的頭像 發(fā)表于 09-19 10:56 ?679次閱讀