0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于一種鋰離子電池的電池監(jiān)控系統(tǒng)設(shè)計(jì)

電子工程師 ? 來源:網(wǎng)絡(luò)整理 ? 作者:佚名 ? 2020-02-24 09:53 ? 次閱讀

鋰離子(Li-Ion)電池是電動汽車和混合動力汽車的常用儲能方法。這些電池可提供的能量密度在所有現(xiàn)有電池技術(shù)中是非常高的,但是如果要最大限度地提升性能,必須使用電池監(jiān)控系統(tǒng)(BMS)。先進(jìn)的BMS不僅使您能夠從電池組中提取大量的電荷,而且還可以以更安全的方式管理充電和放電循環(huán),從而延長使用壽命。ADI公司提供種類齊全的BMS器件組合,專注于精度和穩(wěn)健的運(yùn)行。

精確測量電池的充電狀態(tài)(SOC)可以延長電池運(yùn)行時(shí)間或減輕重量。精密穩(wěn)定的器件在PCB裝配后無需工廠校準(zhǔn)。長期穩(wěn)定性提高了安全性并可避免保修問題。自我診斷功能有助于達(dá)到合適的汽車安全完整性等級(ASIL)。電池組是充滿電磁干擾(EMI)挑戰(zhàn)的環(huán)境,因此在設(shè)計(jì)數(shù)據(jù)通信鏈路時(shí)要進(jìn)行特別處理,以確保測量芯片與系統(tǒng)控制器之間穩(wěn)健可靠的通信。電纜和連接器是造成電池系統(tǒng)故障的主要原因,因此本文介紹了無線解決方案。無線通信設(shè)計(jì)提高了可靠性并減輕了系統(tǒng)總重量,進(jìn)而增加了每次充電的行駛里程。

儲能單元必須能夠提供大容量,并且能以可控方式釋放能量。如果不能進(jìn)行適當(dāng)?shù)目刂疲芰康拇鎯歪尫艜?dǎo)致電池災(zāi)難性故障,并最終引起火災(zāi)。電池可能會由于多種原因而發(fā)生故障,其中大多數(shù)與不當(dāng)使用有關(guān)。故障可能來自機(jī)械應(yīng)力或損壞,以及以深度放電、過度充電、過電流和熱過應(yīng)力等形式表現(xiàn)出的電氣過載。為了盡可能提高效率和安全性,電池監(jiān)控系統(tǒng)必不可少。

BMS的主要功能是通過監(jiān)控以下物理量使電池組中所有單節(jié)電池保持在其安全工作區(qū)域(SOA)中:電池組充電和放電電流、單節(jié)電池電壓以及電池組溫度?;谶@些數(shù)值,不僅可以使電池安全運(yùn)行,而且可以進(jìn)行SOC和健康狀態(tài)(SOH)計(jì)算。

BMS提供的另一個(gè)重要功能是電池平衡。在電池組中,可以將單節(jié)電池并聯(lián)或串聯(lián)放置,以達(dá)到所需的容量和工作電壓(高達(dá)1 kV或更高)。電池制造商試圖為電池組提供相同的電池,但這在物理上并不現(xiàn)實(shí)。即使很小的差異也會導(dǎo)致不同的充電或放電電平,而電池組中最弱的電池會嚴(yán)重影響電池組的整體性能。精確的電池平衡是BMS的一項(xiàng)重要功能,它可確保電池系統(tǒng)以其最大容量安全運(yùn)行。

BMS架構(gòu)

電動汽車電池由幾節(jié)電池串聯(lián)組成。一個(gè)典型的電池組(具有96節(jié)串聯(lián)電池)以4.2 V充電時(shí)會產(chǎn)生超過400 V的總電壓。電池組中的電池節(jié)數(shù)越多,所達(dá)到的電壓就越高。所有電池的充電和放電電流都相同,但是必須對每節(jié)電池上的電壓進(jìn)行監(jiān)控。為了容納高功率汽車系統(tǒng)所需的大量電池,通常將多節(jié)電池分成幾個(gè)模塊,并分置于車輛的整個(gè)可用空間內(nèi)。典型模塊擁有10到24節(jié)電池,可以采用不同配置進(jìn)行裝配以適合多個(gè)車輛平臺。模塊化設(shè)計(jì)可作為大型電池組的基礎(chǔ)。它允許將電池組分置于更大的區(qū)域,從而更有效地利用空間。

ADI公司開發(fā)了一系列電池監(jiān)控器,能夠測量多達(dá)18節(jié)串聯(lián)連接的電池。AD7284可以測量8節(jié)電池,LTC6811可以測量12節(jié)電池,LTC6813則可以測量18節(jié)電池。圖1顯示了一個(gè)典型的具有96節(jié)電池的電池組,分為8個(gè)模塊,每個(gè)模塊12個(gè)電池單元。在本示例中,電池監(jiān)控器IC為可測量12節(jié)電池的LTC6811。該IC具有0 V至5 V的電池測量范圍,適合大多數(shù)電池化學(xué)應(yīng)用。可將多個(gè)器件串聯(lián),以便同時(shí)監(jiān)測很長的高壓電池組。該器件包括每節(jié)電池的被動平衡。數(shù)據(jù)在隔離柵兩邊進(jìn)行交換并由系統(tǒng)控制器編譯,該控制器負(fù)責(zé)計(jì)算SOC、控制電池平衡、檢查SOH,并使整個(gè)系統(tǒng)保持在安全限制內(nèi)。

基于一種鋰離子電池的電池監(jiān)控系統(tǒng)設(shè)計(jì)

圖1.采用LTC6811 12通道測量IC、具有96節(jié)電池的電池組架構(gòu)。

為了在電動汽車/混合動力汽車的高EMI環(huán)境中支持分布式模塊化拓?fù)?,穩(wěn)鍵的通信系統(tǒng)必不可少。隔離CAN總線和ADI的isoSPI?都提供了經(jīng)過驗(yàn)證的解決方案,適合在這種環(huán)境中進(jìn)行模塊互聯(lián)。1盡管CAN總線為在汽車應(yīng)用中互聯(lián)電池模塊提供了完善的網(wǎng)絡(luò),但它需要許多附加元件。例如,通過LTC6811的isoSPI接口實(shí)現(xiàn)隔離CAN總線需要增加一個(gè)CAN收發(fā)器、一個(gè)微處理器和一個(gè)隔離器。CAN總線的主要缺點(diǎn)是這些額外元件會增加成本和電路板空間。圖2顯示了基于CAN的一種可行架構(gòu)。在這個(gè)示例中,所有模塊都并聯(lián)連接。

ADI創(chuàng)新的雙線式isoSPI接口是CAN總線接口的替代方法。1isoSPI接口集成在每個(gè)LTC6811中,使用一個(gè)簡單的變壓器和一根簡單的雙絞線,而非CAN總線所需的四線。isoSPI接口提供了一個(gè)抗噪接口(用于高電平RF信號),利用該接口可以將模塊通過長電纜以菊花鏈形式連接,并以高達(dá)1 Mbps的數(shù)據(jù)速率運(yùn)行。圖3顯示了基于isoSPI并使用CAN模塊作為網(wǎng)關(guān)的架構(gòu)。

圖2和圖3所示的兩種架構(gòu)各有利弊。CAN模塊是標(biāo)準(zhǔn)化模塊,可以與其他CAN子系統(tǒng)共享同一總線運(yùn)行;isoSPI接口是專有接口,只能與相同類型的器件進(jìn)行通信。另一方面,isoSPI模塊不需要額外的收發(fā)器和MCU來處理軟件堆棧,從而使解決方案更緊湊、更易于使用。兩種架構(gòu)都需要有線連接,這在現(xiàn)代BMS中具有明顯的缺點(diǎn),因?yàn)樵诓季€中,導(dǎo)線走線至不同的模塊會成為一個(gè)棘手的問題,同時(shí)又增加了重量和復(fù)雜性。導(dǎo)線也很容易吸收噪聲,從而需要進(jìn)行額外的濾波。

無線BMS

無線BMS是一種新穎的架構(gòu),它消除了通信布線。1在無線BMS中,每個(gè)模塊的互聯(lián)都通過無線連接方式實(shí)現(xiàn)。大型多節(jié)電池的電池組無線連接的優(yōu)勢是:

連線復(fù)雜度更低

重量更輕

Lower cost

成本更低

安全性和可靠性更高

由于惡劣的EMI環(huán)境以及RF屏蔽金屬構(gòu)成的信號傳播障礙,無線通信成為一個(gè)難題。

ADI的SmartMesh?嵌入式無線網(wǎng)絡(luò)在工業(yè)物聯(lián)網(wǎng)(IoT)應(yīng)用中經(jīng)過了現(xiàn)場驗(yàn)證,可通過運(yùn)用路徑和頻率分集來實(shí)現(xiàn)冗余,從而在工業(yè)、汽車和其他惡劣環(huán)境中提供可靠性超過99.999%的連接。

除了通過創(chuàng)建多個(gè)冗余連接點(diǎn)來改善可靠性之外,無線Mesh網(wǎng)絡(luò)還擴(kuò)展了BMS的功能。SmartMesh無線網(wǎng)絡(luò)可實(shí)現(xiàn)電池模塊的靈活放置,并改善了電池SOC和SOH的計(jì)算。這是因?yàn)榭梢詮陌惭b在以前不適合布線之處的傳感器收集更多的數(shù)據(jù)。SmartMesh還提供了來自每個(gè)節(jié)點(diǎn)的時(shí)間相關(guān)測量結(jié)果,從而可以實(shí)現(xiàn)更加精確的數(shù)據(jù)收集。圖4顯示了有線互聯(lián)和無線互聯(lián)電池模塊的比較。

ADI演示了業(yè)界首款無線汽車BMS概念車,在BMW i3.2車型中整合了LTC6811電池組監(jiān)控器和ADI SmartMesh網(wǎng)絡(luò)技術(shù)。這是一項(xiàng)重大突破,有望提高電動汽車/混合動力汽車大型多節(jié)電池組的可靠性,并降低成本、重量和布線復(fù)雜性。

基于一種鋰離子電池的電池監(jiān)控系統(tǒng)設(shè)計(jì)

圖2.獨(dú)立的CAN模塊并聯(lián)。

基于一種鋰離子電池的電池監(jiān)控系統(tǒng)設(shè)計(jì)

圖3.采用CAN網(wǎng)關(guān)的模塊串聯(lián)。

精確測量的重要性

精度是BMS的一個(gè)重要特性,對于LiFePO4電池至關(guān)重要。3,4為了了解該特性的重要性,我們考慮圖5中的示例。為了防止過度充電和放電,電池單元應(yīng)保持在滿容量的10%到90%之間。在85 kWh的電池中,可用于正常行駛的容量僅為67.4 kWh。如果測量誤差為5%,為了繼續(xù)安全地進(jìn)行電池運(yùn)行,必須將電池容量保持在15%至85%之間??偪捎萌萘恳褟?0%減少到了70%。如果將精度提高到1%(對于LiFePO4電池,1 mV的測量誤差相當(dāng)于1%的SOC誤差),那么電池現(xiàn)在可以在滿容量的11%到89%之間運(yùn)行,增加了8%。使用相同的電池和精度更高的BMS,可以增加每次充電的汽車行駛里程。

電路設(shè)計(jì)人員根據(jù)數(shù)據(jù)手冊中的規(guī)格來估算電池測量電路的精度。其他現(xiàn)實(shí)世界的效應(yīng)通常會在測量誤差中占主導(dǎo)地位。影響測量精度的因素包括:

初始容差

溫度漂移

長期漂移

濕度

PCB裝配應(yīng)力

噪音抑制

基于一種鋰離子電池的電池監(jiān)控系統(tǒng)設(shè)計(jì)

圖4.電池監(jiān)控互聯(lián)方式比較。

基于一種鋰離子電池的電池監(jiān)控系統(tǒng)設(shè)計(jì)

圖5.電池充電限制。

完善的技術(shù)必須考慮所有這些因素,才能提供非常出色的性能。IC的測量精度主要受基準(zhǔn)電壓的限制?;鶞?zhǔn)電壓對機(jī)械應(yīng)力很敏感。PCB焊接期間的熱循環(huán)會產(chǎn)生硅應(yīng)力。濕度是產(chǎn)生硅應(yīng)力的另一個(gè)原因,因?yàn)榉庋b會吸收水分。硅應(yīng)力會隨著時(shí)間的推移而松弛,從而導(dǎo)致基準(zhǔn)電壓的長期漂移。

電池測量IC使用帶隙基準(zhǔn)電壓或齊納基準(zhǔn)電壓。IC設(shè)計(jì)人員使用反向擊穿時(shí)的NPN發(fā)射極-基極結(jié)作為齊納二極管基準(zhǔn)電壓源。擊穿發(fā)生在芯片表面,因?yàn)槲廴疚锖脱趸瘜与姾稍诖颂幮?yīng)最為明顯。這些結(jié)噪聲高,存在不可預(yù)測的短期和長期漂移。埋入式齊納二極管將結(jié)放置在硅表面下方,遠(yuǎn)離污染物和氧化層的影響。其結(jié)果是齊納二極管具有出色的長期穩(wěn)定性、低噪聲和相對精確的初始容差。因此,齊納二極管基準(zhǔn)電壓源在減輕隨時(shí)間變化的現(xiàn)實(shí)世界的效應(yīng)方面表現(xiàn)出眾。

LTC68xx系列使用了實(shí)驗(yàn)室級的齊納二極管基準(zhǔn)電壓源,這是ADI經(jīng)過30多年不斷完善的技術(shù)。圖6顯示了五個(gè)典型單元的電池測量IC誤差隨溫度的漂移。在整個(gè)汽車級溫度范圍-40°C至+125°C內(nèi),漂移都小于1 mV。

圖7對比了帶隙基準(zhǔn)電壓源IC和埋入式齊納二極管基準(zhǔn)電壓源IC的長期漂移。初始測量值的誤差校準(zhǔn)為0 mV。通過在30°C下3000小時(shí)之后的漂移來預(yù)測十年的測量漂移。該圖片清楚地顯示了隨著時(shí)間的推移,齊納二極管基準(zhǔn)電壓源具有更出色的穩(wěn)定性,至少比帶隙基準(zhǔn)電壓源提高5倍。類似的濕度和PCB裝配應(yīng)力測試表明,埋入式齊納二極管的性能比帶隙基準(zhǔn)電壓源更勝一籌。

基于一種鋰離子電池的電池監(jiān)控系統(tǒng)設(shè)計(jì)

圖6.LTC6811測量誤差與溫度的關(guān)系。

基于一種鋰離子電池的電池監(jiān)控系統(tǒng)設(shè)計(jì)

圖7.埋入式齊納二極管和帶隙基準(zhǔn)電壓源之間的長期漂移比較。

基于一種鋰離子電池的電池監(jiān)控系統(tǒng)設(shè)計(jì)

圖8.ADC濾波器的可編程范圍和頻率響應(yīng)。

精度的另一個(gè)限制因素是噪聲。由于電動汽車/混合動力汽車中的電機(jī)、功率逆變器DC-DC轉(zhuǎn)換器和其他大電流開關(guān)系統(tǒng)會產(chǎn)生電磁干擾,因此汽車電池是面向電子器件非常惡劣的環(huán)境。BMS需要能夠提供高水平的噪聲抑制,才能保持精度。濾波是用來減少無用噪聲的經(jīng)典方法,但它需要在降低噪聲與轉(zhuǎn)換速度之間進(jìn)行權(quán)衡。由于需要轉(zhuǎn)換和傳輸?shù)碾姵仉妷汉芨?,因此轉(zhuǎn)換時(shí)間不能太長。SAR轉(zhuǎn)換器或許是理想選擇,但在多路復(fù)用系統(tǒng)中,速度受到多路復(fù)用信號的建立時(shí)間限制。此時(shí),Σ-Δ轉(zhuǎn)換器則成為有效的替代方案。

ADI的測量IC采用了Σ-Δ模數(shù)轉(zhuǎn)換器(ADC)。通過Σ-Δ ADC,可在轉(zhuǎn)換過程中輸入進(jìn)行多次采樣,然后取其平均值。結(jié)果構(gòu)成內(nèi)置低通濾波,從而可消除作為測量誤差源的噪聲;截止頻率由采樣速率確定。LTC6811采用了一個(gè)三階Σ-ΔADC,具有可編程采樣速率和八個(gè)可選截止頻率。圖8顯示了八個(gè)可編程截止頻率的濾波器響應(yīng)。通過對所有12節(jié)電池在290 μs的時(shí)間內(nèi)快速完成測量,可實(shí)現(xiàn)出色的降噪效果。大電流注入測試將100 mA的RF噪聲耦合到連接電池與IC的導(dǎo)線中,該測試顯示測量誤差小于3 mV。

電池平衡以優(yōu)化電池容量

即使能精確地制造和選擇電池,它們之間也會顯示出細(xì)微的差異。電池之間任何的容量不匹配都會導(dǎo)致電池組整體容量的減少。

為了更好地理解這一點(diǎn),我們來考慮一個(gè)示例,其中各節(jié)電池保持在滿容量的10%到90%之間。深度放電或過度充電會大大縮短電池的有效使用壽命。因此,BMS提供欠壓保護(hù)(UVP)和過壓保護(hù)(OVP)電路,以幫助防止出現(xiàn)這些情況。當(dāng)容量最低的電池達(dá)到OVP閾值時(shí),將停止充電過程。在這種情況下,其他電池尚未充滿電,并且電池儲能沒有達(dá)到最大允許的容量。同樣,當(dāng)最低充電量的電池達(dá)到UVP限值時(shí),系統(tǒng)停止工作。另外,電池組中仍然有能量可為系統(tǒng)供電,但是出于安全原因,不能繼續(xù)使用電池組。

顯然,電池組中最弱的電池支配著整個(gè)電池組的性能。電池平衡是一種通過在電池充滿電時(shí)均衡電池之間的電壓和SOC來幫助克服此問題的技術(shù)。5電池平衡技術(shù)有兩種:被動和主動。

使用被動平衡時(shí),如果一節(jié)電池過度充電,就會將多余的電荷耗散到電阻中。通常,采用一個(gè)分流電路,該電路由電阻和用作開關(guān)的功率MOSFET組成。當(dāng)電池過度充電時(shí),MOSFET關(guān)斷,將多余的能量耗散到電阻中。LTC6811使用一個(gè)內(nèi)置MOSFET來控制各節(jié)電池的充電電流,從而平衡被監(jiān)視的每節(jié)電池。內(nèi)置MOSFET可使設(shè)計(jì)緊湊,并能夠滿足60 mA的電流要求。對于更高的充電電流,可以使用外部MOSFET。該器件還提供了定時(shí)器來調(diào)整平衡時(shí)間。

耗散技術(shù)的優(yōu)點(diǎn)是低成本和低復(fù)雜度。缺點(diǎn)是能量損耗大并且熱設(shè)計(jì)更復(fù)雜。而另一方面,主動平衡會在模塊的其他電池之間重新分配多余的能量。這樣,可以回收能量并且產(chǎn)生的熱量更低。這種技術(shù)的缺點(diǎn)是硬件設(shè)計(jì)更復(fù)雜。

基于一種鋰離子電池的電池監(jiān)控系統(tǒng)設(shè)計(jì)

圖9.采用主動平衡的12節(jié)電池的電池組模塊。

圖9顯示了采用LT8584實(shí)現(xiàn)的主動平衡。該架構(gòu)通過主動分流充電電流,并將能量返回電池組來解決被動分流平衡器存在的問題。能量并沒有以熱量的形式發(fā)生損耗,而是被重新利用,為電池組中的其余電池充電。該器件的架構(gòu)還解決了一個(gè)問題,即當(dāng)電池組中的一節(jié)或多節(jié)電池在整個(gè)電池組容量用盡之前就達(dá)到較低安全電壓閾值時(shí),會造成運(yùn)行時(shí)間減少。只有主動平衡才能將電荷從強(qiáng)電池重新分配到弱電池。這樣可以使弱電池繼續(xù)為負(fù)載供電,從而可從電池組中提取更高百分比的能量。反激式拓?fù)浣Y(jié)構(gòu)允許電荷在電池組內(nèi)任意兩點(diǎn)之間往返。大多數(shù)應(yīng)用將電荷返回到電池模塊(12節(jié)或更多),其他一些應(yīng)用則將電荷返回到整個(gè)電池組,還有些應(yīng)用將電荷返回到輔助電源軌。

結(jié)論

低排放車輛的關(guān)鍵是電氣化,但還需要對能源(鋰離子電池)進(jìn)行智能管理。如果管理不當(dāng),電池組可能會變得不可靠,從而大大降低汽車的安全性。高精度有助于提高電池的性能和使用壽命。主動和被動電池平衡可實(shí)現(xiàn)安全高效的電池管理。分布式電池模塊易于支持,并且將數(shù)據(jù)穩(wěn)定地傳遞到BMS控制器(無論是有線方式還是無線方式)能夠?qū)崿F(xiàn)可靠的SOC和SOH計(jì)算。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評論

    相關(guān)推薦

    通信電源系統(tǒng)的守護(hù)者:鋰離子電池

    在通信電源系統(tǒng)中,為保障通信電源系統(tǒng)不間斷工作,鋰離子電池作為備用電源,成為其重要的守護(hù)者。套配置了鋰離子電池的通信電源
    的頭像 發(fā)表于 06-15 08:05 ?164次閱讀
    通信電源<b class='flag-5'>系統(tǒng)</b>的守護(hù)者:<b class='flag-5'>鋰離子電池</b>

    鋰離子電池的優(yōu)缺點(diǎn)

    鋰離子電池一種二次電池(充電電池),其工作原理主要依賴于鋰離子在正極和負(fù)極之間的移動。在充電過程中,
    的頭像 發(fā)表于 05-06 17:20 ?2243次閱讀

    典型鋰離子電池充電器電路圖分享

    鋰離子電池充電器是一種專門用于為鋰離子電池充電的設(shè)備。由于鋰離子電池對充電器的要求較高,需要保護(hù)電路,所以鋰離子電池充電器通常都有較高的控制
    的頭像 發(fā)表于 02-07 18:23 ?6352次閱讀
    典型<b class='flag-5'>鋰離子電池</b>充電器電路圖分享

    什么是鋰離子電池?鋰離子電池有記憶效應(yīng)嗎?

    什么是鋰離子電池?鋰離子電池有記憶效應(yīng)嗎? 鋰離子電池一種通過鋰離子在正負(fù)極之間的反復(fù)遷移實(shí)現(xiàn)電荷儲存和釋放的
    的頭像 發(fā)表于 01-10 16:31 ?1467次閱讀

    鋰離子電池熱失控過程,不同鋰電池熱失控反應(yīng)樣嗎?

    鋰離子電池熱失控過程,不同鋰電池熱失控反應(yīng)樣嗎? 鋰離子電池一種主要用于儲存和提供電能的設(shè)備,而它在功能性能和安全性方面受到了廣泛關(guān)注。
    的頭像 發(fā)表于 01-10 15:16 ?530次閱讀

    什么是鋰離子電池失效?鋰離子電池失效如何有效分析檢測?

    、使用環(huán)境、充電和放電過程中的條件等。在這篇文章中,我們將詳細(xì)介紹鋰離子電池失效的各種原因,并提供些有效的分析和檢測方法。 首先,我們來看看鋰離子電池失效的主要原因之——
    的頭像 發(fā)表于 01-10 14:32 ?768次閱讀

    離子電池未來會取代鋰離子電池嗎?兩者之間有何異同?

    離子電池未來會取代鋰離子電池嗎?兩者之間有何異同? 隨著全球?qū)稍偕茉春湍茉磧Υ嫘枨蟮牟粩嘣黾樱?b class='flag-5'>鋰離子電池作為目前主流的能源儲存技術(shù),面臨
    的頭像 發(fā)表于 01-10 13:45 ?704次閱讀

    短路對鋰離子電池的影響

    短路對鋰離子電池的影響 短路是一種在電路中造成電流過大和電壓降低的現(xiàn)象。當(dāng)個(gè)電路中的電阻突然降低,電流就會急劇增加,而電壓也會相應(yīng)降低,這種現(xiàn)象就被稱為短路。 短路是導(dǎo)致鋰離子電池
    的頭像 發(fā)表于 12-08 15:55 ?1921次閱讀

    改變我們生活的鋰離子電池 | 第講:什么是鋰離子電池?專家談鋰離子電池的工作原理和特點(diǎn)

    改變我們生活的鋰離子電池 | 第講:什么是鋰離子電池?專家談鋰離子電池的工作原理和特點(diǎn)
    的頭像 發(fā)表于 12-06 15:12 ?700次閱讀
    改變我們生活的<b class='flag-5'>鋰離子電池</b> | 第<b class='flag-5'>一</b>講:什么是<b class='flag-5'>鋰離子電池</b>?專家談<b class='flag-5'>鋰離子電池</b>的工作原理和特點(diǎn)

    改變我們生活的鋰離子電池 | 第二講:鋰離子電池的優(yōu)點(diǎn)和充電時(shí)的注意事項(xiàng)

    改變我們生活的鋰離子電池 | 第二講:鋰離子電池的優(yōu)點(diǎn)和充電時(shí)的注意事項(xiàng)
    的頭像 發(fā)表于 12-05 18:10 ?447次閱讀
    改變我們生活的<b class='flag-5'>鋰離子電池</b> | 第二講:<b class='flag-5'>鋰離子電池</b>的優(yōu)點(diǎn)和充電時(shí)的注意事項(xiàng)

    鋰離子電池的優(yōu)缺點(diǎn)

    鋰離子電池的優(yōu)缺點(diǎn) 鋰離子電池一種常見的充電式電池,被廣泛應(yīng)用于移動設(shè)備、電動車輛以及儲能系統(tǒng)等領(lǐng)域。它的優(yōu)點(diǎn)包括高能量密度、長壽命、輕量
    的頭像 發(fā)表于 11-22 17:15 ?3326次閱讀

    鋰離子電池的容量是多少?如何計(jì)算鋰離子電池容量?

    鋰離子電池容量是電池在特定條件下可以存儲和放電為電流的最大能量。
    的頭像 發(fā)表于 11-17 16:10 ?1.2w次閱讀
    <b class='flag-5'>鋰離子電池</b>的容量是多少?如何計(jì)算<b class='flag-5'>鋰離子電池</b>容量?

    什么是鋰離子電池致性?如何提高鋰離子電池致性?

    什么是鋰離子電池致性?鋰離子電池不穩(wěn)定的原因?如何提高鋰離子電池致性? 鋰離子電池
    的頭像 發(fā)表于 11-10 14:49 ?1562次閱讀

    鋰離子電池老化的原因 鋰電池老化的影響

    鋰離子電池老化的原因 鋰電池老化的影響 鋰離子電池(Lithium-ion battery)是一種常見的可充電電池,由于其高能量密度和長周期
    的頭像 發(fā)表于 11-10 14:41 ?2080次閱讀

    改善鋰離子電池的5條關(guān)鍵途徑

    改善鋰離子電池的5條關(guān)鍵途徑? 改善鋰離子電池是目前能源存儲領(lǐng)域的重要任務(wù)之。鋰離子電池具有高能量密度、長壽命和良好的充放電性能等優(yōu)勢,因此被廣泛應(yīng)用于移動設(shè)備、電動車輛和儲能
    的頭像 發(fā)表于 11-10 14:41 ?1255次閱讀