0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

ZYNQ SOC驗證設計:PS端DMA緩存數據到PS端DDR

電子設計 ? 來源:CSDN博主 ? 作者:沒落騎士 ? 2020-12-31 11:24 ? 次閱讀

上篇該系列博文中講述W5500接收到上位機傳輸的數據,此后需要將數據緩存起來。當數據量較大或者其他數據帶寬較高的情況下,片上緩存(OCM)已無法滿足需求,這時需要將大量數據保存在外掛的DDR SDRAM中。

最簡單的方式是使用Xilinx的讀寫地址庫函數Xil_In32()和Xil_Out32(),當然不僅支持32bit位寬,還包括8 16和64bit。但這種方式每次讀寫都要占用CPU,無法在讀寫的同時接收后續(xù)數據或者對之前的數據進一步處理,也就無法形成類似FPGA邏輯設計中的“流水線結構”,此時前段數據緩存過程中,后段數據會被丟棄。所以,需要利用PS端CPU子系統內的專用硬件DMA完成高速的批量數據搬移工作。

pIYBAF9uKQWAI-4wAAMm2ngn2_4294.png

在Xilinx SDK的system.mss頁面下直接導入ps_dma示例工程。
#include
#include
#include "sleep.h"
#include "xparameters.h"
#include "xil_types.h"
#include "xil_assert.h"
#include "xil_io.h"
#include "xil_exception.h"
#include "xil_cache.h"
#include "xil_printf.h"
#include "xscugic.h"
#include "xdmaps.h"

/************************** Constant Definitions *****************************/
/*
* The following constants map to the XPAR parameters created in the
* xparameters.h file. They are defined here such that a user can easily
* change all the needed parameters in one place.
*/
#define DMA_DEVICE_ID XPAR_XDMAPS_1_DEVICE_ID
#define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID

#define DMA_DONE_INTR_0 XPAR_XDMAPS_0_DONE_INTR_0
#define DMA_DONE_INTR_1 XPAR_XDMAPS_0_DONE_INTR_1
#define DMA_DONE_INTR_2 XPAR_XDMAPS_0_DONE_INTR_2
#define DMA_DONE_INTR_3 XPAR_XDMAPS_0_DONE_INTR_3
#define DMA_DONE_INTR_4 XPAR_XDMAPS_0_DONE_INTR_4
#define DMA_DONE_INTR_5 XPAR_XDMAPS_0_DONE_INTR_5
#define DMA_DONE_INTR_6 XPAR_XDMAPS_0_DONE_INTR_6
#define DMA_DONE_INTR_7 XPAR_XDMAPS_0_DONE_INTR_7
#define DMA_FAULT_INTR XPAR_XDMAPS_0_FAULT_INTR

#define TEST_ROUNDS 1 /* Number of loops that the Dma transfers run.*/
#define DMA_LENGTH 1024 /* Length of the Dma Transfers */
#define TIMEOUT_LIMIT 0x2000 /* Loop count for timeout */

/**************************** Type Definitions *******************************/

/***************** Macros (Inline Functions) Definitions *********************/

/************************** Function Prototypes ******************************/

int XDmaPs_Example_W_Intr(XScuGic *GicPtr, u16 DeviceId);
int SetupInterruptSystem(XScuGic *GicPtr, XDmaPs *DmaPtr);
void DmaDoneHandler(unsigned int Channel, XDmaPs_Cmd *DmaCmd,
void *CallbackRef);

/************************** Macro Definitions *****************************/

/************************** Variable Definitions *****************************/
#ifdef __ICCARM__
#pragma data_alignment=32
static int Src[DMA_LENGTH];
static int Dst[DMA_LENGTH];
#pragma data_alignment=4
#else
static int Src[DMA_LENGTH] __attribute__ ((aligned (32)));
static int Dst[DMA_LENGTH] __attribute__ ((aligned (32)));
#endif

XDmaPs DmaInstance;
#ifndef TESTAPP_GEN
XScuGic GicInstance;
#endif

/****************************************************************************/
/**
*
* This is the main function for the DmaPs interrupt example.
*
* @param None.
*
* @return XST_SUCCESS to indicate success, otherwise XST_FAILURE.
*
* @note None.
*
****************************************************************************/
#ifndef TESTAPP_GEN
int main(void)
{
int Status;

Status = XDmaPs_Example_W_Intr(&GicInstance,DMA_DEVICE_ID);
if (Status != XST_SUCCESS) {
xil_printf("Error: XDMaPs_Example_W_Intr failed/r/n");
return XST_FAILURE;
}

xil_printf("XDMaPs_Example_W_Intr passed/r/n");
return XST_SUCCESS;

}
#endif

/*****************************************************************************/
/**
*
* Interrupt Example to test the DMA.
*
* @param DeviceId is the Device ID of the DMA controller.
*
* @return XST_SUCCESS to indicate success, otherwise XST_FAILURE.
*
* @note None.
*
****************************************************************************/
int XDmaPs_Example_W_Intr(XScuGic *GicPtr, u16 DeviceId)
{
int Index;
unsigned int Channel = 0;
int Status;
int TestStatus;
int TestRound;
int TimeOutCnt;
volatile int Checked[XDMAPS_CHANNELS_PER_DEV];
XDmaPs_Config *DmaCfg;
XDmaPs *DmaInst = &DmaInstance;
XDmaPs_Cmd DmaCmd;

memset(&DmaCmd, 0, sizeof(XDmaPs_Cmd));

DmaCmd.ChanCtrl.SrcBurstSize = 4;
DmaCmd.ChanCtrl.SrcBurstLen = 4;
DmaCmd.ChanCtrl.SrcInc = 1;
DmaCmd.ChanCtrl.DstBurstSize = 4;
DmaCmd.ChanCtrl.DstBurstLen = 4;
DmaCmd.ChanCtrl.DstInc = 1;
DmaCmd.BD.SrcAddr = (u32) Src;
DmaCmd.BD.DstAddr = (u32) Dst;
DmaCmd.BD.Length = DMA_LENGTH * sizeof(int);

/*
* Initialize the DMA Driver
*/
DmaCfg = XDmaPs_LookupConfig(DeviceId);
if (DmaCfg == NULL) {
return XST_FAILURE;
}

Status = XDmaPs_CfgInitialize(DmaInst,
DmaCfg,
DmaCfg->BaseAddress);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}

/*
* Setup the interrupt system.
*/
Status = SetupInterruptSystem(GicPtr, DmaInst);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}

TestStatus = XST_SUCCESS;

for (TestRound = 0; TestRound xil_printf("Test round %d/r/n", TestRound);
for (Channel = 0;
Channel Channel++) {

/* Initialize source */
for (Index = 0; Index Src[Index] = DMA_LENGTH - Index;

/* Clear destination */
for (Index = 0; Index Dst[Index] = 0;

Checked[Channel] = 0;

/* Set the Done interrupt handler */
XDmaPs_SetDoneHandler(DmaInst,
Channel,
DmaDoneHandler,
(void *)Checked);

Status = XDmaPs_Start(DmaInst, Channel, &DmaCmd, 0);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}

TimeOutCnt = 0;

/* Now the DMA is done */
while (!Checked[Channel]
&& TimeOutCnt TimeOutCnt++;
}

if (TimeOutCnt >= TIMEOUT_LIMIT) {
TestStatus = XST_FAILURE;
}

if (Checked[Channel] /* DMA controller failed */
TestStatus = XST_FAILURE;
}
}
}

return TestStatus;

}

/******************************************************************************/
/**
*
* This function connects the interrupt handler of the interrupt controller to
* the processor. This function is seperate to allow it to be customized for
* each application. Each processor or RTOS may require unique processing to
* connect the interrupt handler.
*
* @param GicPtr is the GIC instance pointer.
* @param DmaPtr is the DMA instance pointer.
*
* @return None.
*
* @note None.
*
****************************************************************************/
int SetupInterruptSystem(XScuGic *GicPtr, XDmaPs *DmaPtr)
{
int Status;
#ifndef TESTAPP_GEN
XScuGic_Config *GicConfig;

Xil_ExceptionInit();

/*
* Initialize the interrupt controller driver so that it is ready to
* use.
*/
GicConfig = XScuGic_LookupConfig(INTC_DEVICE_ID);
if (NULL == GicConfig) {
return XST_FAILURE;
}

Status = XScuGic_CfgInitialize(GicPtr, GicConfig,
GicConfig->CpuBaseAddress);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}

/*
* Connect the interrupt controller interrupt handler to the hardware
* interrupt handling logic in the processor.
*/
Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_IRQ_INT,
(Xil_ExceptionHandler)XScuGic_InterruptHandler,
GicPtr);
#endif
/*
* Connect the device driver handlers that will be called when an interrupt
* for the device occurs, the device driver handler performs the specific
* interrupt processing for the device
*/

/*
* Connect the Fault ISR
*/
Status = XScuGic_Connect(GicPtr,
DMA_FAULT_INTR,
(Xil_InterruptHandler)XDmaPs_FaultISR,
(void *)DmaPtr);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}

/*
* Connect the Done ISR for all 8 channels of DMA 0
*/
Status = XScuGic_Connect(GicPtr,
DMA_DONE_INTR_0,
(Xil_InterruptHandler)XDmaPs_DoneISR_0,
(void *)DmaPtr);
Status |= XScuGic_Connect(GicPtr,
DMA_DONE_INTR_1,
(Xil_InterruptHandler)XDmaPs_DoneISR_1,
(void *)DmaPtr);
Status |= XScuGic_Connect(GicPtr,
DMA_DONE_INTR_2,
(Xil_InterruptHandler)XDmaPs_DoneISR_2,
(void *)DmaPtr);
Status |= XScuGic_Connect(GicPtr,
DMA_DONE_INTR_3,
(Xil_InterruptHandler)XDmaPs_DoneISR_3,
(void *)DmaPtr);
Status |= XScuGic_Connect(GicPtr,
DMA_DONE_INTR_4,
(Xil_InterruptHandler)XDmaPs_DoneISR_4,
(void *)DmaPtr);
Status |= XScuGic_Connect(GicPtr,
DMA_DONE_INTR_5,
(Xil_InterruptHandler)XDmaPs_DoneISR_5,
(void *)DmaPtr);
Status |= XScuGic_Connect(GicPtr,
DMA_DONE_INTR_6,
(Xil_InterruptHandler)XDmaPs_DoneISR_6,
(void *)DmaPtr);
Status |= XScuGic_Connect(GicPtr,
DMA_DONE_INTR_7,
(Xil_InterruptHandler)XDmaPs_DoneISR_7,
(void *)DmaPtr);

if (Status != XST_SUCCESS)
return XST_FAILURE;

/*
* Enable the interrupts for the device
*/
XScuGic_Enable(GicPtr, DMA_DONE_INTR_0);
XScuGic_Enable(GicPtr, DMA_DONE_INTR_1);
XScuGic_Enable(GicPtr, DMA_DONE_INTR_2);
XScuGic_Enable(GicPtr, DMA_DONE_INTR_3);
XScuGic_Enable(GicPtr, DMA_DONE_INTR_4);
XScuGic_Enable(GicPtr, DMA_DONE_INTR_5);
XScuGic_Enable(GicPtr, DMA_DONE_INTR_6);
XScuGic_Enable(GicPtr, DMA_DONE_INTR_7);
XScuGic_Enable(GicPtr, DMA_FAULT_INTR);

Xil_ExceptionEnable();

return XST_SUCCESS;

}

/*****************************************************************************/
/**
*
* DmaDoneHandler.
*
* @param Channel is the Channel number.
* @param DmaCmd is the Dma Command.
* @param CallbackRef is the callback reference data.
*
* @return None.
*
* @note None.
*
******************************************************************************/
void DmaDoneHandler(unsigned int Channel, XDmaPs_Cmd *DmaCmd, void *CallbackRef)
{

/* done handler */
volatile int *Checked = (volatile int *)CallbackRef;
int Index;
int Status = 1;
int *Src;
int *Dst;

Src = (int *)DmaCmd->BD.SrcAddr;
Dst = (int *)DmaCmd->BD.DstAddr;

/* DMA successful */
/* compare the src and dst buffer */
for (Index = 0; Index if ((Src[Index] != Dst[Index]) ||
(Dst[Index] != DMA_LENGTH - Index)) {
Status = -XST_FAILURE;
}
}

Checked[Channel] = Status;
}

ps_dma_demo

其實demo中做的操作非常簡單,僅僅是定義了兩個數組Src和Dst,之后利用PS_DMA將Src中數據搬移到Dst中,搬移完成后進入中斷函數比較兩部分地址數據是否一致。Xilinx的SDK軟件代碼有固定的套路,“上有政策,下有對策”,我們可以將其封裝成固定格式的一個個子函數,方便今后調用。這里把整個工程分為:系統中斷,PS_DMA專有中斷以及主函數三個部分。
#include "xscugic.h"
#include "sys_intr.h"

int sys_IntrInit(XScuGic *GicPtr)
{
XScuGic_Config *GicConfig;
/*
* Initialize the interrupt controller driver so that it is ready to
* use.
*/
int Status;
GicConfig = XScuGic_LookupConfig(INTC_DEVICE_ID);
if (NULL == GicConfig) {
return XST_FAILURE;
}

Status = XScuGic_CfgInitialize(GicPtr, GicConfig,
GicConfig->CpuBaseAddress);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
return XST_SUCCESS;
}

void setupIntrException(XScuGic *GicPtr)
{
Xil_ExceptionInit();
/*
* Connect the interrupt controller interrupt handler to the hardware
* interrupt handling logic in the processor.
*/
Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_IRQ_INT,
(Xil_ExceptionHandler)XScuGic_InterruptHandler,
GicPtr);
Xil_ExceptionEnable();
}

sys_intr.c

#ifndef SRC_SYS_INTR_H_
#define SRC_SYS_INTR_H_

#define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID

int sys_IntrInit(XScuGic *GicPtr);
void setupIntrException(XScuGic *GicPtr);

#endif /* SRC_SYS_INTR_H_ */

sys_intr.h

#include "xil_types.h"
#include "xdmaps.h"
#include "xscugic.h"
#include "psdma_intr.h"

int PS_DMA_IntrInit(XDmaPs *DmaInst,u16 DeviceId)
{
/*
* Initialize the DMA Driver
*/
int Status;
XDmaPs_Config *DmaCfg = NULL;
DmaCfg = XDmaPs_LookupConfig(DeviceId);
if (DmaCfg == NULL) {
return XST_FAILURE;
}

Status = XDmaPs_CfgInitialize(DmaInst,
DmaCfg,
DmaCfg->BaseAddress);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
return XST_SUCCESS;
}

int PS_DMA_SetupIntr(XScuGic *GicPtr,XDmaPs *DmaPtr,unsigned Channel)
{
int Status;
/*
* Connect the device driver handlers that will be called when an interrupt
* for the device occurs, the device driver handler performs the specific
* interrupt processing for the device
*/

/*
* Connect the Fault ISR
*/
Status = XScuGic_Connect(GicPtr,
DMA_FAULT_INTR,
(Xil_InterruptHandler)XDmaPs_FaultISR,
(void *)DmaPtr);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}

/*
* Connect the Done ISR for all 8 channels of DMA 0
*/
Status = XScuGic_Connect(GicPtr,
DMA_DONE_INTR_0,
(Xil_InterruptHandler)XDmaPs_DoneISR_0,
(void *)DmaPtr);
/*Status |= XScuGic_Connect(GicPtr,
DMA_DONE_INTR_1,
(Xil_InterruptHandler)XDmaPs_DoneISR_1,
(void *)DmaPtr);
Status |= XScuGic_Connect(GicPtr,
DMA_DONE_INTR_2,
(Xil_InterruptHandler)XDmaPs_DoneISR_2,
(void *)DmaPtr);
Status |= XScuGic_Connect(GicPtr,
DMA_DONE_INTR_3,
(Xil_InterruptHandler)XDmaPs_DoneISR_3,
(void *)DmaPtr);
Status |= XScuGic_Connect(GicPtr,
DMA_DONE_INTR_4,
(Xil_InterruptHandler)XDmaPs_DoneISR_4,
(void *)DmaPtr);
Status |= XScuGic_Connect(GicPtr,
DMA_DONE_INTR_5,
(Xil_InterruptHandler)XDmaPs_DoneISR_5,
(void *)DmaPtr);
Status |= XScuGic_Connect(GicPtr,
DMA_DONE_INTR_6,
(Xil_InterruptHandler)XDmaPs_DoneISR_6,
(void *)DmaPtr);
Status |= XScuGic_Connect(GicPtr,
DMA_DONE_INTR_7,
(Xil_InterruptHandler)XDmaPs_DoneISR_7,
(void *)DmaPtr);*/

if (Status != XST_SUCCESS)
return XST_FAILURE;

/* Set the Done interrupt handler */
XDmaPs_SetDoneHandler(DmaPtr,
Channel,//Channel
DmaDoneHandler,//真正的中斷函數
(void *)Checked);

/*
* Enable the interrupts for the device
*/
XScuGic_Enable(GicPtr, DMA_DONE_INTR_0);
/*
XScuGic_Enable(GicPtr, DMA_DONE_INTR_1);
XScuGic_Enable(GicPtr, DMA_DONE_INTR_2);
XScuGic_Enable(GicPtr, DMA_DONE_INTR_3);
XScuGic_Enable(GicPtr, DMA_DONE_INTR_4);
XScuGic_Enable(GicPtr, DMA_DONE_INTR_5);
XScuGic_Enable(GicPtr, DMA_DONE_INTR_6);
XScuGic_Enable(GicPtr, DMA_DONE_INTR_7);*/
XScuGic_Enable(GicPtr, DMA_FAULT_INTR);

return XST_SUCCESS;
}

void DmaDoneHandler(unsigned int Channel, XDmaPs_Cmd *DmaCmd, void *CallbackRef)
{

/* done handler */
volatile int *Checked = (volatile int *)CallbackRef;
//int Index;
int Status = 1;

xil_printf("Enter into the interrupt/n");
Checked[Channel] = Status;
}

void PS_DMA_InitPara(XDmaPs_Cmd* DmaCmd)
{

memset(DmaCmd, 0, sizeof(XDmaPs_Cmd));

DmaCmd->ChanCtrl.SrcBurstSize = 4;
DmaCmd->ChanCtrl.SrcBurstLen = 4;
DmaCmd->ChanCtrl.SrcInc = 1;
DmaCmd->ChanCtrl.DstBurstSize = 4;
DmaCmd->ChanCtrl.DstBurstLen = 4;
DmaCmd->ChanCtrl.DstInc = 1;
DmaCmd->BD.SrcAddr = (u32) Src;
DmaCmd->BD.DstAddr = (u32) DDR_BASEADDR;//Dst
DmaCmd->BD.Length = DMA_LENGTH * sizeof(int);
}

psdma_intr.c

#ifndef SRC_PSDMA_INTR_H_
#define SRC_PSDMA_INTR_H_

#define DMA_DONE_INTR_0 XPAR_XDMAPS_0_DONE_INTR_0
#define DMA_DONE_INTR_1 XPAR_XDMAPS_0_DONE_INTR_1
#define DMA_DONE_INTR_2 XPAR_XDMAPS_0_DONE_INTR_2
#define DMA_DONE_INTR_3 XPAR_XDMAPS_0_DONE_INTR_3
#define DMA_DONE_INTR_4 XPAR_XDMAPS_0_DONE_INTR_4
#define DMA_DONE_INTR_5 XPAR_XDMAPS_0_DONE_INTR_5
#define DMA_DONE_INTR_6 XPAR_XDMAPS_0_DONE_INTR_6
#define DMA_DONE_INTR_7 XPAR_XDMAPS_0_DONE_INTR_7
#define DMA_FAULT_INTR XPAR_XDMAPS_0_FAULT_INTR

#define DDR_BASEADDR 0x00600000//XPAR_PS7_DDR_0_S_AXI_BASEADDR 0x00100000
#define DMA_LENGTH 1024 /* Length of the Dma Transfers */

int Src[DMA_LENGTH] __attribute__ ((aligned (32)));
volatile int Checked[XDMAPS_CHANNELS_PER_DEV];

int PS_DMA_IntrInit(XDmaPs *DmaInst,u16 DeviceId);
int PS_DMA_SetupIntr(XScuGic *GicPtr,XDmaPs *DmaPtr,unsigned Channel);
void DmaDoneHandler(unsigned int Channel, XDmaPs_Cmd *DmaCmd, void *CallbackRef);
void PS_DMA_InitPara(XDmaPs_Cmd* DmaCmd);

#endif /* SRC_PSDMA_INTR_H_ */

psdma_intr.h

#include
#include
#include "sleep.h"
#include "xparameters.h"
#include "xil_types.h"
#include "xil_assert.h"
#include "xil_io.h"
#include "xil_exception.h"
#include "xil_cache.h"
#include "xil_printf.h"
#include "xscugic.h"
#include "xdmaps.h"

#include "sys_intr.h"
#include "psdma_intr.h"

#define DMA_DEVICE_ID XPAR_XDMAPS_1_DEVICE_ID
#define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID

#define TEST_ROUNDS 1 /* Number of loops that the Dma transfers run.*/
#define TIMEOUT_LIMIT 0x2000 /* Loop count for timeout */

static XScuGic GicInstance;
static XDmaPs DmaInstance;
static XDmaPs_Cmd DmaCmd;
unsigned int Channel = 0;

/************************** Function Prototypes ******************************/

int PS_DMA_WriteTest();
int SetupInterruptSystem(XScuGic *GicPtr, XDmaPs *DmaPtr);
void DmaDoneHandler(unsigned int Channel, XDmaPs_Cmd *DmaCmd,
void *CallbackRef);
int dataCheck(u32 baseAddr,u32 len);
int systemInit(XScuGic *GicPtr,u16 DeviceId);

int main(void)
{
int Status;
Status = systemInit(&GicInstance,DMA_DEVICE_ID);
if (Status != XST_SUCCESS) {
xil_printf("System initialization is failed/r/n");
return XST_FAILURE;
}

Status = PS_DMA_WriteTest();
if (Status != XST_SUCCESS) {
xil_printf("Error: XDMaPs_Example_W_Intr failed/r/n");
return XST_FAILURE;
}
xil_printf("Checking data.../n");
Status = dataCheck(DDR_BASEADDR,DMA_LENGTH);
if(Status != XST_SUCCESS)
{
xil_printf("Error:check failed/n");
return XST_FAILURE;
}

xil_printf("Writing data to DDR using DMA test passed!/r/n");
return XST_SUCCESS;

}

int dataCheck(u32 baseAddr,u32 len)
{
u32 DDR_ReadData[1024];
int i;
for(i=0;i {
DDR_ReadData[i] = Xil_In32(baseAddr+i*4);
if(DDR_ReadData[i]!=Src[i])
return XST_FAILURE;
//else //將寫入DDR數據讀回 并打印
// xil_printf("data at %x is %d/n",baseAddr+i*4,DDR_ReadData[i]);
}
return XST_SUCCESS;
}

/*****************************************************************************/
/**
*
* Interrupt Example to test the DMA.
*
* @param DeviceId is the Device ID of the DMA controller.
*
* @return XST_SUCCESS to indicate success, otherwise XST_FAILURE.
*
* @note None.
*
****************************************************************************/
int PS_DMA_WriteTest()
{
int Index;
int Status;
int TestStatus;
int TestRound;
int TimeOutCnt;

TestStatus = XST_SUCCESS;

for (TestRound = 0; TestRound xil_printf("Test round %d/r/n", TestRound);
for (Channel = 0;Channel {
/* Initialize source */
for (Index = 0; Index Src[Index] = DMA_LENGTH - Index;

Checked[Channel] = 0;

Status = XDmaPs_Start(&DmaInstance, Channel, &DmaCmd, 0);
if (Status != XST_SUCCESS) {
xil_printf("Starting the DMA is failed./n");
return XST_FAILURE;
}
xil_printf("Starting the DMA is successful./n");
TimeOutCnt = 0;

while (!Checked[Channel]
&& TimeOutCnt TimeOutCnt++;
}
/* Now the DMA is done */
xil_printf("Jump out of the interrupt/n");
if (TimeOutCnt >= TIMEOUT_LIMIT) {
xil_printf("Overtime!/n");
TestStatus = XST_FAILURE;
}

if (Checked[Channel] /* DMA controller failed */
xil_printf("Checking failure!/n");
TestStatus = XST_FAILURE;
}
}
}

return TestStatus;

}

int systemInit(XScuGic *GicPtr,u16 DeviceId)
{
xil_printf("Start to initialize interrupt system./n");

PS_DMA_InitPara(&DmaCmd);//主要設置DMA的源目的地址
//xil_printf("Configuring DMA parameters is successful./n");

int Status;

Status = PS_DMA_IntrInit(&DmaInstance,DeviceId);
if (Status != XST_SUCCESS) {
xil_printf("DMA initialization is failed./n");
return XST_FAILURE;
}
//xil_printf("DMA initialization is successful./n");

Status = sys_IntrInit(GicPtr);
if (Status != XST_SUCCESS) {
xil_printf("Initialization of the interrupt system is failed./n");
return XST_FAILURE;
}
//xil_printf("Initialization of the interrupt system is successful./n");

setupIntrException(GicPtr);

Status = PS_DMA_SetupIntr(GicPtr,&DmaInstance,Channel);//////////////////////////DMA中斷入口///////////////////////
if (Status != XST_SUCCESS) {
xil_printf("Setting up DMA interrupt is failed./n");
return XST_FAILURE;
}
//xil_printf("Setting up DMA interrupt is successful./n");

xil_printf("System initialization is finished./n");
xil_printf("------------------------------------------/n");
return XST_SUCCESS;
}

main.c

上述代碼的封裝方式參考了米聯客教程中的思想。先說明系統中斷部分:sys_IntrInit()函數中進行查找表配置和中斷控制器初始化操作,setupIntrException()函數負責使能中斷異常處理。再來說說PS_DMA中斷部分:PS_DMA_IntrInit()函數與系統中斷中sys_IntrInit()從操作到格式幾乎完成相同,亦是查找表配置和DMA的初始化。PS_DMA_SetupIntr()函數完成了中斷源和中斷控制器的連接和設置中斷處理器,以及中斷使能,也就是所有PS_DMA的專用中斷操作。

PS_DMA_SetupIntr()內最重要的部分是XDmaPs_SetDoneHandler(),其相當于一個調用中斷函數的通用處理框架,它的第三個參數DoneHandler才是真正的中斷處理函數。這里涉及到C語言的高級話題:函數通過函數指針調用另一個函數,被函數指針調用的函數就是通常講的“回調函數”了。指針調用函數的方式兼顧了程序的通用架構和靈活性,具體參考文章:不懂C語言回調函數,那就看這篇文章吧! - 簡書 https://www.jianshu.com/p/2f695d6fd64f 在該程序中,中斷回調函數為DmaDoneHandler()。

PS_DMA_InitPara()是自行添加的PS_DMA參數初始化函數,內部的參數更是重中之重了,我們來查看Xilinx官方文檔ug585的DMA Controller章節(jié)。

pIYBAF9uKQiAex56AAKFFebVFeI958.png

簡要來說,DMA以burst形式傳輸數據,意思是分批次搬移。手冊說明原或目的burst_size位寬不能超過64bit,這也是其掛載AXI總線的數據位寬。PS_DMA_InitPara()里的SrcBurstSize為源突發(fā)傳輸位寬字節(jié)數,最大為8.SrcBurstLen是手冊中所說的“burst length”,即突發(fā)傳輸數據個數。SrcInc表示burst types為地址自增(1)還是地址固定(0)模式。目的控制字同理。剩下的三個參數最重要:SrcAddr DstAddr Length分別代表源首地址 目的首地址和一共需要搬移的數據字節(jié)數。需要注意的是,一定要滿足srcburstsize*srcburstlen == dstburstsize*dstburstlen,否則發(fā)生錯誤。這一點也比較好理解,相當于FPGA邏輯設計中的異步FIFO兩側數據帶寬要匹配。

那么要想完成OCM到DDR的數據搬移,改動下地址就可以嘛。由于讀寫DDR要訪問絕對地址,所以要格外注意讀寫操作的地址不能和DDR內存儲程序代碼和中間數據的地址段重疊。避免程序崩潰很簡單的做法就是在XPAR_PS7_DDR_0_S_AXI_BASEADDR 的基礎上加一段偏移量,具體加多少的問題本人也不是很明確,希望看到的朋友能在評論中指點一二。

對于ZYNQ這一SOC架構來說,PS端連接如以太網,USB等高帶寬外設計接口更加方便,所以PS_DMA的靈活運用還好是十分必要的,更靈活高效的利用這一硬件資源還要后期繼續(xù)探索。PS端和PL端高速數據交互就需要用到另一個DMA成員AXI_DMA,可以說它利用片內總線打破了CPU+FPGA架構的性能瓶頸,該部分內容將在后續(xù)說明。

編輯:hfy


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯系本站處理。 舉報投訴
  • FPGA
    +關注

    關注

    1624

    文章

    21573

    瀏覽量

    600704
  • 以太網
    +關注

    關注

    40

    文章

    5323

    瀏覽量

    170534
  • usb
    usb
    +關注

    關注

    60

    文章

    7854

    瀏覽量

    263377
  • Zynq
    +關注

    關注

    9

    文章

    607

    瀏覽量

    47084
收藏 人收藏

    評論

    相關推薦

    InfiniBand網絡解決LLM訓練瓶頸

    的,這需要大量的計算資源和高速數據傳輸網絡。InfiniBand(IB)網絡作為高性能計算和AI模型訓練的理想選擇,發(fā)揮著重要作用。在本文中,我們將深入探討大型語言模型(LLM)
    的頭像 發(fā)表于 10-23 11:26 ?123次閱讀
    <b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>InfiniBand網絡解決LLM訓練瓶頸

    測試用例怎么寫

    測試方法,旨在驗證整個應用程序從前端后端的流程是否能夠按照預期工作。它涉及多個系統組件和接口的交互,確保業(yè)務流程的完整性和正確性。 二、編寫
    的頭像 發(fā)表于 09-20 10:29 ?250次閱讀

    復旦微PS+PL異構多核開發(fā)案例分享,基于FMQL20SM國產處理器平臺

    FMQL20S400M是復旦微四核ARM Cortex-A7@1GHz(PS)+85K可編程邏輯資源(PL)異構多核SoC處理器。創(chuàng)龍科技基于FMQL20S400M設計的工業(yè)核心板
    發(fā)表于 08-22 14:04

    FM20S用戶手冊-PS + PL異構多核案例開發(fā)手冊

    PS) + FPGA可編程邏輯資源(PL)異構多核SoC處理器設計的全國產工業(yè)評估板,PS
    發(fā)表于 07-25 16:14

    有關PL利用AXI總線控制PSDDR進行讀寫(從機wready信號一直不拉高)

    一直拉高的。這與寫數據通道好像有點區(qū)別。 我不清楚PS DDR到底發(fā)生了什么,但是和MIG核就是有點不一樣,通過仿真MIG核可以發(fā)現,PL
    發(fā)表于 05-31 12:04

    小鵬汽車發(fā)布大模型

    小鵬汽車近日宣布,其成功研發(fā)并發(fā)布了“國內首個量產上車”的大模型,該模型可直接通過傳感器輸入內容來控制車輛,標志著智能駕駛技術的新突破。
    的頭像 發(fā)表于 05-21 15:09 ?614次閱讀

    Xilinx ZYNQ 動手實操演練

    的一致性。也就是是說,第一個A9處理器寫存儲時,只是寫在了緩存里,沒有進主存,如果第二個A9讀操作,涉及第一個寫臟了的數據段, SCU要保證第二個A9的緩存里是最新的
    發(fā)表于 05-03 19:28

    如何使用Vitis自帶的LWIP模板進行PS千兆以太網TCP通信?

    開發(fā)板有兩路千兆以太網,通過RGMII接口連接,本實驗演示如何使用Vitis自帶的LWIP模板進行PS千兆以太網TCP通信。
    的頭像 發(fā)表于 04-28 10:44 ?2624次閱讀
    如何使用Vitis自帶的LWIP模板進行<b class='flag-5'>PS</b><b class='flag-5'>端</b>千兆以太網TCP通信?

    請問FX3的UART口和Xilinx ZYNQ7000的PS的UART進行硬件連接需要TTL電平轉換嗎?

    想讓FX3的UART口和Xilinx ZYNQ7000的PS(Processor system)的內置UART相互通信,兩個芯片使用的是同一個電源(同在一塊板子上或分別在兩塊相互連接的板子上),請教一下它們之間的硬件連接需要T
    發(fā)表于 02-28 08:32

    AD9681是否可被zynq-7020的pl驅動?

    您好: 我想咨詢AD9681是否可以被zynq-7020的PL驅動(zynq7020的性能是否足夠)。我們需要做衛(wèi)星的探測載荷,由于衛(wèi)星能源控制嚴格,我們需要低功耗、多通道(至少8個)、高采樣率
    發(fā)表于 12-04 08:18

    Zynq7045的PS的SPI外設配置AD9154讀取芯片ID返回值一直為FF的原因?

    Zynq7045的PS的SPI外設配置AD9154讀取芯片ID(0x005地址)返回值一直為FF,但是用相同的代碼去讀取AD9434就沒有問題,能正常讀取ID值,實在是搞不清楚問題會出在哪里
    發(fā)表于 12-01 11:59

    使用 PCIE 更新 AMD ZYNQ? 的 QSPI Flash 參考設計

    簡介 AMD ZYNQ? 7000 的 S_AXI 端口提供了外設訪問 PS 內部外設控制器的接口,這其中包括 4 個 S_AXI_HP 端口以及兩個 S_AXI_GP 端口。一般來說,可以訪問
    發(fā)表于 11-30 18:49

    形式化驗證最佳實踐之三:實現屬性

    實際上,讓我們從一個不是但對高速緩存至關重要的屬性開始。該屬性是我們唯一需要檢查內部細節(jié)的屬性。它可以驗證
    的頭像 發(fā)表于 11-24 14:48 ?481次閱讀
    形式化<b class='flag-5'>驗證</b>最佳實踐之三:實現<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>屬性

    什么是通信?

    在嵌入式系統領域,無論是在汽車、航空航天還是工業(yè)應用中,確保關鍵數據安全準確地傳輸至關重要。為了應對這一挑戰(zhàn),一種被稱為通信的安全措施已經成為一項基本原則。 什么是
    的頭像 發(fā)表于 11-24 11:07 ?1250次閱讀

    ZYNQ的ARM和FPGA數據交互——AXI交互最重要的細節(jié)

    的存儲器。 ⑥ACP : PL可以直接從PS的Cache中拿到CPU計算的結果,延時低 ⑦DMA :DMA控制接口,用于控制高速數據傳輸的
    發(fā)表于 11-03 10:51