0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

簡(jiǎn)單實(shí)用的IO輸入輸出框架

GReq_mcu168 ? 來(lái)源:硬件攻城獅 ? 作者:硬件攻城獅 ? 2022-06-02 14:12 ? 次閱讀
在一個(gè)嵌入式系統(tǒng)中,可能存在許多輸入或輸出的IO口,輸入有霍爾傳感器、紅外對(duì)管等,輸出有LED、電源控制開關(guān)等。 如果說(shuō)硬件可以一次成型,那么隨便一份代碼都可以完成IO的配置工作,但研發(fā)階段的產(chǎn)品,硬件各種修改是難免的,每一次 IO 的修改,對(duì)于底層開發(fā)人員來(lái)說(shuō),可能都是一次挑戰(zhàn)。 因?yàn)橐坏┯心骋粋€(gè) IO 配置錯(cuò)誤,或者原來(lái)的配置沒有修改正確(比如一個(gè) IO 在原來(lái)的硬件適配中是輸入,之后的硬件需要修改成輸出),那么你很難查出來(lái)這是什么問題,因?yàn)檫@個(gè)時(shí)候不僅硬件修改了,軟件也修改了,你需要先定位到底是軟件問題還是硬件問題,所以一個(gè)好用的 IO 的配置框架就顯得很有必要了。

有道友會(huì)說(shuō),不如使用 CubeMx 軟件進(jìn)行開發(fā)吧。

1、這個(gè)軟件適用于 ST 單片機(jī),以前還能用,現(xiàn)在,除非你家里有礦,不然誰(shuí)用的起STM32?基本上都國(guó)產(chǎn)化了(雖然有些單片機(jī)號(hào)稱兼容,但到底還是有些差異的)。2、公司原本的代碼就是使用標(biāo)準(zhǔn)庫(kù),只是因?yàn)镮O 的變化,你就需要把整個(gè)庫(kù)換掉嗎?時(shí)間上允許嗎?你確定修改后不會(huì)出現(xiàn)大問題?3、國(guó)產(chǎn)化的芯片可沒有所謂的標(biāo)準(zhǔn)庫(kù)和HAL庫(kù)供你選擇,每一家都有各自的庫(kù),如果你的產(chǎn)品臨時(shí)換方案怎么辦?4、HAL 效率問題。今天魚鷹介紹一個(gè)簡(jiǎn)單實(shí)用的框架,可用于快速增加或修改IO配置,甚至修改底層庫(kù)。假設(shè)有3個(gè) LED 作為輸出、3 個(gè)霍爾傳感器作為輸入:輸入配置代碼:
#defineGPIOx_DefGPIO_TypeDef*#define GPIOMode_Def        GPIOMode_TypeDef
typedef struct{    GPIOx_Def       gpio;     uint16_t        msk;    GPIOMode_Def    pull_up_down;     } bsp_input_pin_def; 
#define  _GPIO_PIN_INPUT(id, pull, gpiox, pinx)   [id].gpio = (GPIOx_Def)gpiox, [id].msk = (1 << pinx), [id].pull_up_down = (GPIOMode_Def)pull#define  GPIO_PIN_INPUT(id, pull, gpiox, pinx)    _GPIO_PIN_INPUT(id, pull, gpiox, pinx)
#define bsp_pin_get_port(gpiox)             ((uint16_t)((GPIO_TypeDef *)gpiox)->IDR)#define bsp_pin_get_value(variable,id)      do{ bsp_pin_get_port(bsp_input_pin[id].gpio) & bsp_input_pin[id].msk ? variable |= (1 << id) : 0;} while(0)

#define BSP_GPIO_PUPD_NONE                                          GPIO_Mode_IN_FLOATING#define BSP_GPIO_PUPD_PULLUP                                        GPIO_Mode_IPU#define BSP_GPIO_PUPD_PULLDOWN                                      GPIO_Mode_IPD

typedef enum{    PIN_INPUT_HALL_0 = 0,  // 輸入 IO 定義    PIN_INPUT_HALL_1,       PIN_INPUT_HALL_2,                        PIN_INPUT_MAX}bsp_pin_input_id_def;
static const bsp_input_pin_def  bsp_input_pin [PIN_INPUT_MAX] = {    GPIO_PIN_INPUT(PIN_INPUT_HALL_0,          BSP_GPIO_PUPD_NONE, GPIOA, 0),    GPIO_PIN_INPUT(PIN_INPUT_HALL_1,          BSP_GPIO_PUPD_NONE, GPIOB, 8),        GPIO_PIN_INPUT(PIN_INPUT_HALL_2,          BSP_GPIO_PUPD_NONE, GPIOE, 9),   };
// 單個(gè) IO 初始化函數(shù)  void bsp_pin_init_input(GPIOx_Def gpiox, uint32_t msk, GPIOMode_TypeDef pull_up_down){    uint32_t temp;
    assert_param((msk & 0xffff0000) == 0 && gpiox != 0);
    temp = ((uint32_t) gpiox - (uint32_t) GPIOA) / ( (uint32_t) GPIOB - (uint32_t) GPIOA);
    /* enable the led clock */    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA << temp, ENABLE);
    GPIO_InitTypeDef GPIO_InitStruct;
    GPIO_InitStruct.GPIO_Mode  = (GPIOMode_Def)pull_up_down;    GPIO_InitStruct.GPIO_Pin   = msk;    GPIO_InitStruct.GPIO_Speed = GPIO_Speed_2MHz;
    GPIO_Init((GPIO_TypeDef*)gpiox, &GPIO_InitStruct);}
// 所有 IO 初始化void gpio_input_init(){        bsp_input_pin_def  *info;
    info = (bsp_input_pin_def *)&bsp_input_pin;
    for(int i = 0; i < sizeof(bsp_input_pin)/sizeof(bsp_input_pin[0]); i++)    {        bsp_pin_init_input(info->gpio, info->msk, info->pull_up_down);        info++;    }   }

// 最多支持 32 個(gè) IO 輸入uint32_t bsp_input_all(void){    uint32_t temp = 0;
    bsp_pin_get_value(temp, PIN_INPUT_HALL_0);    bsp_pin_get_value(temp, PIN_INPUT_HALL_1);    bsp_pin_get_value(temp, PIN_INPUT_HALL_2);
    return temp;}

// 讀取單個(gè) IO 狀態(tài)uint32_t bsp_input_level(bsp_pin_input_id_def id){    return (bsp_pin_get_port(bsp_input_pin[id].gpio) & bsp_input_pin[id].msk) ? 1 : 0;}
typedef enum{    HW_HAL_LEVEL_ACTIVE = 0, // 可直接修改為 0 或 1,另一個(gè)枚舉值自動(dòng)修改為相反值    HW_HAL_LEVEL_NO_ACTIVE = !HW_HAL_LEVEL_ACTIVE,}hw_input_hal_status_def;
typedef struct  {    hw_input_hal_status_def hal_level0;     uint8_t                 hal_level1;    uint8_t                 hal_level2;}bsp_input_status_def;

bsp_input_status_def bsp_input_status;
int main(void){      USRAT_Init(9600);//必須,進(jìn)入調(diào)試模式后點(diǎn)擊全速運(yùn)行
    gpio_input_init();
    while(1)    {        uint32_t temp = bsp_input_all();
        bsp_input_status.hal_level0 = (hw_input_hal_status_def)((temp >> PIN_INPUT_HALL_0) & 1);        bsp_input_status.hal_level1 = ((temp >> PIN_INPUT_HALL_1) & 1);        bsp_input_status.hal_level2 = ((temp >> PIN_INPUT_HALL_2) & 1);    }                      }
調(diào)試的時(shí)候,我們可以很方便的查看每個(gè) IO 的狀態(tài)是怎樣的,而不用管 0 或 1 到底代表什么意思:52583768-e23a-11ec-ba43-dac502259ad0.png輸出配置代碼:
#define GPIOx_Def           GPIO_TypeDef*#define GPIOMode_Def        GPIOMode_TypeDef
typedef struct{    GPIOx_Def  gpio;     uint32_t   msk;     uint32_t   init_value; } bsp_output_pin_def; 
#define  _GPIO_PIN_OUT(id, gpiox, pinx, init)                        [id].gpio = gpiox, [id].msk = (1 << pinx), [id].init_value = init#define  GPIO_PIN_OUT(id, gpiox, pinx, init)                         _GPIO_PIN_OUT(id, gpiox, pinx, init)
#define _bsp_pin_output_set(gpiox, pin)                              (gpiox)->BSRR = pin#define bsp_pin_output_set(gpiox, pin)                               _bsp_pin_output_set(gpiox, pin)
#define _bsp_pin_output_clr(gpiox, pin)                              (gpiox)->BRR = pin#define bsp_pin_output_clr(gpiox, pin)                               _bsp_pin_output_clr(gpiox, pin)
typedef enum{    PIN_OUTPUT_LED_G,    PIN_OUTPUT_LED_R,      PIN_OUTPUT_LED_B,    PIN_OUTPUT_MAX}bsp_pin_output_id_def;
static const bsp_output_pin_def  bsp_output_pin [PIN_OUTPUT_MAX] = {    GPIO_PIN_OUT(PIN_OUTPUT_LED_G,          GPIOA,  0, 0),    GPIO_PIN_OUT(PIN_OUTPUT_LED_R,          GPIOF, 15, 0),    GPIO_PIN_OUT(PIN_OUTPUT_LED_B,          GPIOD, 10, 0),};

void bsp_pin_init_output(GPIOx_Def gpiox, uint32_t msk, uint32_t init){    uint32_t temp;
    assert_param((msk & 0xffff0000) == 0 && gpiox != 0);
    temp = ((uint32_t) gpiox - (uint32_t) GPIOA) / ( (uint32_t) GPIOB - (uint32_t) GPIOA);
    /* enable the led clock */    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA << temp, ENABLE);
    GPIO_InitTypeDef GPIO_InitStruct;
    GPIO_InitStruct.GPIO_Mode  = (GPIOMode_Def)GPIO_Mode_Out_PP;    GPIO_InitStruct.GPIO_Pin   = msk;    GPIO_InitStruct.GPIO_Speed = GPIO_Speed_2MHz;
    GPIO_Init((GPIO_TypeDef*)gpiox, &GPIO_InitStruct);
    if(init == 0)    {        bsp_pin_output_clr(gpiox, msk);    }    else    {        bsp_pin_output_set(gpiox, msk);    }}
void bsp_output_init(){    bsp_output_pin_def  *info;
    info = (bsp_output_pin_def *)&bsp_output_pin;    for(int i = 0; i < sizeof(bsp_output_pin)/sizeof(bsp_output_pin[0]); i++)    {        bsp_pin_init_output(info->gpio, info->msk, info->init_value);        info++;    }}
void bsp_output(bsp_pin_output_id_def id, uint32_t value){    assert_param(id < PIN_OUTPUT_MAX);
    if(value == 0)    {        bsp_pin_output_clr(bsp_output_pin[id].gpio, bsp_output_pin[id].msk);    }    else    {        bsp_pin_output_set(bsp_output_pin[id].gpio, bsp_output_pin[id].msk);    }}
int main(void){      USRAT_Init(9600);//必須,進(jìn)入調(diào)試模式后點(diǎn)擊全速運(yùn)行
    bsp_output_init();
    while(1)    {        bsp_output(PIN_OUTPUT_LED_G, 1);        bsp_output(PIN_OUTPUT_LED_B, 0);        bsp_output(PIN_OUTPUT_LED_R, 1);}}
這個(gè)框架有啥好處呢?
1、自動(dòng)完成 GPIO 的時(shí)鐘初始化工作,也就是說(shuō)你只需要修改引腳即可,不必關(guān)心時(shí)鐘配置,但對(duì)于特殊引腳(比如PB3),還是得另外配置才行。2、應(yīng)用和底層具體 IO 分離,這樣一旦修改了 IO,應(yīng)用代碼不需要進(jìn)行任何修改。3、增加或刪減 IO 變得很簡(jiǎn)單,增加 IO時(shí),首先加入對(duì)應(yīng)枚舉,然后就可以添加對(duì)應(yīng)的 IO 了。刪除 IO時(shí),只要屏蔽對(duì)應(yīng)枚舉值和引腳即可。4、參數(shù)檢查功能, IO 刪除時(shí),因?yàn)槠帘瘟藢?duì)應(yīng)的枚舉,所以編譯時(shí)可以幫你發(fā)現(xiàn)問題,而增加 IO 時(shí),它可以幫你在運(yùn)行時(shí)檢查該 IO是否進(jìn)行配置了,可以防止因?yàn)槭д`導(dǎo)致的問題。52a3361e-e23a-11ec-ba43-dac502259ad0.png5、更改庫(kù)時(shí)可以很方便,只需要修改對(duì)應(yīng)的宏即可,目前可以順利在 GD32 和 STM32 庫(kù)進(jìn)行快速更換。6、對(duì)于輸入 IO 而言,可以方便的修改有效和無(wú)效狀態(tài),防止硬件修改有效電平。對(duì)于輸出 IO 而言,可以設(shè)定初始 IO 電平狀態(tài)。7、代碼簡(jiǎn)單高效,盡可能的復(fù)用代碼,增加一個(gè) IO 只需要很少的空間。8、缺點(diǎn)就是,只對(duì)同種配置的 IO 可以這樣用。 好好看看,或許能學(xué)到不少技巧哦。 審核編輯 :李倩


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 嵌入式系統(tǒng)
    +關(guān)注

    關(guān)注

    41

    文章

    3535

    瀏覽量

    129004
  • 霍爾傳感器
    +關(guān)注

    關(guān)注

    26

    文章

    697

    瀏覽量

    62957
  • STM32
    +關(guān)注

    關(guān)注

    2263

    文章

    10849

    瀏覽量

    353908

原文標(biāo)題:簡(jiǎn)單實(shí)用IO輸入輸出框架

文章出處:【微信號(hào):mcu168,微信公眾號(hào):硬件攻城獅】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    io口和串口的區(qū)別 單片機(jī)有多少個(gè)io

    等。而串口,即串行通信接口(Serial Communication Interface),是一種數(shù)據(jù)通信方式,通過(guò)一條數(shù)據(jù)線按照順序傳送數(shù)據(jù)。IO口和串口在功能和用途上存在顯著區(qū)別: 通信方式 : IO口 :實(shí)現(xiàn)簡(jiǎn)單
    的頭像 發(fā)表于 10-06 10:06 ?450次閱讀

    誤差放大器的輸入輸出關(guān)系

    誤差放大器(Error Amplifier)在電子測(cè)量和控制系統(tǒng)中扮演著至關(guān)重要的角色,其輸入輸出關(guān)系對(duì)于理解和設(shè)計(jì)這些系統(tǒng)至關(guān)重要。以下是對(duì)誤差放大器輸入輸出關(guān)系的詳細(xì)解析,包括其工作原理、輸入輸出特性、影響因素以及實(shí)際應(yīng)用等
    的頭像 發(fā)表于 09-11 15:32 ?631次閱讀

    隔離變壓器輸入輸出可以隨便接嗎

    隔離變壓器的輸入輸出接線并非可以隨便接,而是需要遵循一定的原則、步驟和注意事項(xiàng),以確保其正常、安全、高效地運(yùn)行。 一、接線原則 電壓匹配 :在接線之前,必須確保輸入電源和輸出電器的電壓與隔離變壓器
    的頭像 發(fā)表于 09-06 11:07 ?405次閱讀

    寄存器的輸入輸出方式

    寄存器的輸入輸出方式是數(shù)字電路設(shè)計(jì)中至關(guān)重要的部分,它決定了數(shù)據(jù)如何在寄存器中進(jìn)出以及處理的效率。下面將詳細(xì)探討寄存器的幾種主要輸入輸出方式,包括并行輸入輸出、串行輸入輸出以及雙向
    的頭像 發(fā)表于 09-05 14:09 ?444次閱讀

    PLC運(yùn)動(dòng)控制中的輸入輸出設(shè)備

    在PLC(可編程邏輯控制器)運(yùn)動(dòng)控制系統(tǒng)中,輸入輸出設(shè)備扮演著至關(guān)重要的角色。這些設(shè)備不僅負(fù)責(zé)將外部信號(hào)傳遞給PLC,還負(fù)責(zé)將PLC的處理結(jié)果輸出到外部執(zhí)行機(jī)構(gòu),從而實(shí)現(xiàn)對(duì)機(jī)械設(shè)備運(yùn)動(dòng)的精確控制。以下是對(duì)PLC運(yùn)動(dòng)控制中輸入輸出
    的頭像 發(fā)表于 09-03 10:52 ?363次閱讀

    PLC輸入輸出信號(hào)異常的原因分析

    在工業(yè)自動(dòng)化領(lǐng)域中,PLC(可編程邏輯控制器)作為控制系統(tǒng)的核心部件,其性能的穩(wěn)定性和可靠性對(duì)于整個(gè)生產(chǎn)線的正常運(yùn)行具有至關(guān)重要的影響。然而,在實(shí)際應(yīng)用中,PLC的輸入輸出信號(hào)異常問題時(shí)有發(fā)生,這不
    的頭像 發(fā)表于 06-12 11:25 ?1666次閱讀

    自定義位寬輸入輸出截位模塊的靈活配置方案

    可配置任意輸入輸出位寬截位模塊
    的頭像 發(fā)表于 04-25 11:36 ?344次閱讀

    PLC的輸入輸出接口是否需要進(jìn)行隔離保護(hù)?

    PLC(可編程邏輯控制器)的輸入輸出接口是否需要進(jìn)行隔離保護(hù),取決于具體的應(yīng)用場(chǎng)景和需求。
    的頭像 發(fā)表于 02-23 09:09 ?1693次閱讀

    鎖相環(huán)的輸入輸出相位一致嗎?

    鎖相環(huán)是保證相位一致,還是相位差一致?鎖相環(huán)的輸入輸出相位一致嗎? 鎖相環(huán)(PLL)是一種回路控制系統(tǒng),用于保持輸出信號(hào)的相位與參考信號(hào)的相位之間的恒定關(guān)系。簡(jiǎn)單來(lái)說(shuō),鎖相環(huán)的目的是保證相位一致
    的頭像 發(fā)表于 01-31 15:45 ?877次閱讀

    輸入輸出電壓差與效率的關(guān)系

    在開關(guān)穩(wěn)壓電源中,輸入電壓的范圍是預(yù)知的,輸出電壓也是知道的,但是輸入輸出的電壓差和轉(zhuǎn)換效率的關(guān)系很多人 不清楚,有經(jīng)驗(yàn)的工程師就會(huì)根據(jù)公式去推導(dǎo)出來(lái)輸入輸出電壓差越小,轉(zhuǎn)換效率越高。
    發(fā)表于 01-05 15:12 ?760次閱讀
    <b class='flag-5'>輸入輸出</b>電壓差與效率的關(guān)系

    環(huán)形變壓器的輸入輸出端接反了會(huì)怎么樣?

    環(huán)形變壓器的輸入輸出端接反了會(huì)怎么樣? 環(huán)形變壓器是一種特殊的變壓器,其特點(diǎn)是具有環(huán)形磁芯。環(huán)形變壓器的輸入輸出端的接反,也就是輸入端連接到輸出
    的頭像 發(fā)表于 12-26 15:19 ?1155次閱讀

    plc輸入輸出的運(yùn)行原理

    plc輸入端24v. 說(shuō)明plc輸入是PNP輸入,要知道怎么接線必須知道plc輸入輸出的運(yùn)行原理。
    發(fā)表于 12-17 09:27 ?1325次閱讀
    plc<b class='flag-5'>輸入輸出</b>的運(yùn)行原理

    降壓DCDC有輸入輸出電壓差嗎

    在LDO specfication里面,有Dropout Voltage(輸入輸出電壓差)的參數(shù)。如下圖,輸出電流100mA時(shí),典型壓差是100mV;輸出電流是300mA時(shí),MAX壓差是300mV(線路阻抗不變下,流過(guò)電流越大,
    的頭像 發(fā)表于 11-15 18:41 ?3583次閱讀
    降壓DCDC有<b class='flag-5'>輸入輸出</b>電壓差嗎

    工業(yè)自動(dòng)化:開關(guān)量輸入輸出采集控制終端

    開關(guān)量是工業(yè)自動(dòng)化場(chǎng)景中最常見的信號(hào)類型之一,如電機(jī)開關(guān)、閥門開關(guān)等。而開關(guān)量輸入輸出采集控制終端(IO數(shù)據(jù)終端)作為連接傳感器、控制器、執(zhí)行器的橋梁,發(fā)揮著重要的作用。 物通博聯(lián)推出的開關(guān)量
    的頭像 發(fā)表于 11-06 11:01 ?508次閱讀
    工業(yè)自動(dòng)化:開關(guān)量<b class='flag-5'>輸入輸出</b>采集控制終端

    CW32通用輸入輸出端口詳解

    CW32通用輸入輸出端口詳解
    的頭像 發(fā)表于 10-30 17:33 ?960次閱讀
    CW32通用<b class='flag-5'>輸入輸出</b>端口詳解