0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

鈮酸鋰超構(gòu)表面制備及光子學(xué)應(yīng)用

MEMS ? 來源:MEMS ? 2023-01-14 17:27 ? 次閱讀

作為三維超構(gòu)材料的衍生物,具有亞波長厚度的人工超構(gòu)表面結(jié)構(gòu)能夠在緊湊的平臺上靈活操縱光與物質(zhì)的相互作用,有利于多功能、超緊湊光子器件的研發(fā),對于微納光子學(xué)和集成光子學(xué)具有重要意義。

鐵電晶體鈮酸鋰(LiNbO3)具有從可見光到中紅外波段(0.35μm~5μm)的透明窗口、相對較高的折射率、優(yōu)異的電光(electro-optic,EO)和二階非線性光學(xué)性能以及出色的聲光和壓電特性,被譽(yù)為“光學(xué)硅”。這些獨(dú)特的性質(zhì)使鈮酸鋰成為光子學(xué)中應(yīng)用最廣泛的材料之一,是實(shí)現(xiàn)高效介電超構(gòu)表面的理想基底材料。

隨著近幾年來絕緣體上鈮酸鋰(lithium-niobate-on-insulator,LNOI)薄膜技術(shù)以及相關(guān)表面微納制造技術(shù)的快速發(fā)展,一系列高質(zhì)量、高性能的鈮酸鋰片上光子功能性器件得以實(shí)現(xiàn),例如具有超高性能的緊湊型調(diào)制器、寬帶頻率梳、以及高效率的光學(xué)頻率轉(zhuǎn)換器和單光子源等。其中,鈮酸鋰片上超構(gòu)表面結(jié)構(gòu)在非線性光學(xué)頻率轉(zhuǎn)換、電光調(diào)制、光無源等方面的研究取得了巨大進(jìn)展。

據(jù)麥姆斯咨詢報道,近期,山東大學(xué)和南開大學(xué)的研究人員組成的團(tuán)隊(duì)在《光電工程》期刊上發(fā)表了題為“鈮酸鋰超構(gòu)表面:制備及光子學(xué)應(yīng)用”的綜述論文,本文簡要介紹了幾種有潛力制備高質(zhì)量鈮酸鋰超構(gòu)表面的微納加工技術(shù),同時總結(jié)了近期鈮酸鋰超構(gòu)表面在光頻轉(zhuǎn)換、電光調(diào)制、光無源等方面的研究進(jìn)展,并對其在微納光學(xué)領(lǐng)域有發(fā)展?jié)摿Φ难芯糠较蜻M(jìn)行了展望。

鈮酸鋰超構(gòu)表面的制備

LNOI片上超構(gòu)表面結(jié)構(gòu)的制備工藝與其它LNOI片上微納光子學(xué)結(jié)構(gòu)(如波導(dǎo)、微腔等)類似。制備過程可以按照有無掩膜的情況加以區(qū)分,典型的制備流程如圖1所示。有掩膜情況主要分為兩種:

1)首先利用光刻技術(shù)實(shí)現(xiàn)光刻膠的圖案化,此處光刻膠可以直接作為掩膜,也可以在光刻后沉積一層金屬作為掩膜,再結(jié)合剝離(lift-off)工藝完成圖案化處理;掩膜制備完成后,結(jié)合干法刻蝕或者化學(xué)機(jī)械拋光(chemical-mechanical polishing,CMP)技術(shù)去除多余的鈮酸鋰,完成圖案轉(zhuǎn)移;隨后進(jìn)行后處理過程,利用濕法刻蝕去除殘留掩膜,實(shí)現(xiàn)微納結(jié)構(gòu)的初步制備。

2)在沉積一層金屬掩膜后采用飛秒激光燒蝕技術(shù)對掩膜進(jìn)行圖案化處理;利用CMP技術(shù)實(shí)現(xiàn)圖案轉(zhuǎn)移;通過后處理過程去除殘留掩膜。無掩膜直接刻蝕鈮酸鋰可以通過聚焦離子束(focused ion beam,F(xiàn)IB)、CMP或者飛秒激光燒蝕技術(shù)實(shí)現(xiàn),其中以FIB技術(shù)最為常見。

此外,對于需要做后處理的微盤腔、納米梁等特殊結(jié)構(gòu),可以再結(jié)合濕法刻蝕去除底部多余的襯底結(jié)構(gòu)。在制備過程中,CMP也可作為降低表面或側(cè)壁粗糙度的后處理過程。

f7b9ac96-83b6-11ed-bfe3-dac502259ad0.png

圖1 LNOI片上微納光子學(xué)結(jié)構(gòu)制備的主要流程圖:圖案化處理;圖案轉(zhuǎn)移;后處理過程 在圖案轉(zhuǎn)移過程中,相比于其他刻蝕方法,干法刻蝕具有各向異性、可靈活控制刻蝕深度、適于轉(zhuǎn)移復(fù)雜二維圖案并兼容多層處理等優(yōu)點(diǎn),在微納結(jié)構(gòu)加工中備受青睞,也更適用于超構(gòu)表面的制備。

研究人員對刻蝕參數(shù)(如氣體比例、功率等)進(jìn)行了不斷優(yōu)化,同時采用濕法刻蝕技術(shù)去除多余反應(yīng)物,從而最大限度地增加側(cè)壁光滑度,減少散射損耗。2020年,德國耶拿大學(xué)Setzpfandt教授課題組通過采用多步驟反應(yīng)離子刻蝕技術(shù),制備出具有光滑側(cè)壁的高質(zhì)量鈮酸鋰超構(gòu)表面,在非共振波段該結(jié)構(gòu)的透過率高達(dá)97%,詳細(xì)的制備流程及SEM圖如圖2所示。

相比于氟基刻蝕,Ar?等離子體純物理刻蝕可以直接從根源上避免LiF的形成,從而實(shí)現(xiàn)更優(yōu)的側(cè)壁光滑度,這也是目前LNOI最常用的干刻方法之一。

f7c280e6-83b6-11ed-bfe3-dac502259ad0.png

圖2(a)鈮酸鋰超構(gòu)表面SHG示意圖;(b)制備工藝流程示意圖;(c)所制備超構(gòu)表面的SEM圖像,其中納米諧振腔由截斷金字塔和下面的殘余層組成

除干法刻蝕外,F(xiàn)IB技術(shù)作為目前最精確的無掩膜微納結(jié)構(gòu)加工方法之一,允許制造高縱橫比及陡峭側(cè)壁的微納結(jié)構(gòu),已應(yīng)用于許多復(fù)雜片上光子器件的制備。由FIB制備的第一個鈮酸鋰薄膜微諧振腔在2015年被提出,Q值為2.5×10?。在制備過程中對飛秒激光燒蝕形成的圓柱連續(xù)進(jìn)行兩次FIB銑削,以光滑其粗糙外圍,圖3顯示了FIB銑削前后微諧振腔側(cè)壁的SEM圖像。

除微諧振腔外,F(xiàn)IB的靈活簡便性及其高精度加工特性有助于充分發(fā)揮鈮酸鋰超構(gòu)表面的潛力,也是目前制備鈮酸鋰超構(gòu)表面的常用方法。盡管FIB技術(shù)非常適合制造需要高分辨率的結(jié)構(gòu),但其操作面積通常為百平方微米,無法滿足大規(guī)模片上光子器件的研制,這也大大限制了其在實(shí)際應(yīng)用中的發(fā)展。

f82614ee-83b6-11ed-bfe3-dac502259ad0.png

圖3(a)飛秒激光燒蝕后柱狀結(jié)構(gòu)的SEM圖像;(b)FIB銑削后圓柱的SEM圖像

作為FIB銑削的替代方案,CMP技術(shù)不僅擺脫了尺寸限制,而且能夠作為后處理過程,顯著改善片上光學(xué)結(jié)構(gòu)表面和側(cè)壁的粗糙度,降低結(jié)構(gòu)的散射損耗,從而成為在鈮酸鋰薄膜上加工超構(gòu)表面的另一種有力備選方案。2017年,德國弗賴堡大學(xué)Buse教授課題組結(jié)合紫外光刻與RIE技術(shù)制備了微環(huán)結(jié)構(gòu),制備過程如圖4(a)所示。

在此基礎(chǔ)上,采用CMP技術(shù)拋光側(cè)壁,使其側(cè)壁粗糙度降低至4nm,Q值>3×10?。圖4(c)和4(d)顯示了CMP前后微環(huán)側(cè)壁的放大SEM圖像。2021年,華東師范大學(xué)程亞教授課題組結(jié)合飛秒激光燒蝕與CMP技術(shù),先后成功實(shí)現(xiàn)了Q值高達(dá)10?(波長為1550nm)的LNOI微盤、微環(huán)諧振腔,接近了鈮酸鋰的本征材料吸收極限,這也是目前文獻(xiàn)報道的最高Q值。

f859d84c-83b6-11ed-bfe3-dac502259ad0.png

圖4 采用紫外光刻結(jié)合RIE技術(shù)制備微環(huán)腔,然后用CMP拋光側(cè)壁。(a)制備工藝流程示意圖;(b)微環(huán)腔SEM圖像;CMP前(c)后(d)微環(huán)腔側(cè)壁的放大SEM圖像

鈮酸鋰超構(gòu)表面的應(yīng)用

非線性光學(xué)頻率轉(zhuǎn)換

二次諧波產(chǎn)生(Second harmonic generation,SHG)是最常見也是最簡單的非線性光學(xué)效應(yīng)之一。在利用LNOI實(shí)現(xiàn)SHG的探索研究過程中,III?V半導(dǎo)體材料GaAs和AlGaAs因其較大的二階非線性光學(xué)系數(shù)受到廣泛關(guān)注,成為研究非線性光學(xué)超構(gòu)表面的理想材料。

然而,這些半導(dǎo)體材料在可見光波段具有很高的光學(xué)吸收,其可見光SHG轉(zhuǎn)換效率很低。與之相比,鈮酸鋰具有較寬的帶隙和較高的二階非線性光學(xué)系數(shù),能夠在紫外到中紅外的寬波段范圍內(nèi)實(shí)現(xiàn)多種高效的非線性效應(yīng),包括SHG效應(yīng)。

在對單個諧振腔SHG研究的基礎(chǔ)上,為進(jìn)一步提高轉(zhuǎn)換效率,研究人員開始致力于對諧振腔陣列即超構(gòu)表面結(jié)構(gòu)的研究。2020年,德國耶拿大學(xué)Setzpfandt教授課題組結(jié)合EBL和IBE技術(shù),制備出由鈮酸鋰截斷金字塔陣列構(gòu)成的共振超構(gòu)表面,該器件在1550nm波長處表現(xiàn)出較強(qiáng)的Mie共振模式。利用鈮酸鋰較大的對角二階非線性極化率張量,在垂直于超構(gòu)表面的方向上觀察到增強(qiáng)的SHG。

此外,通過分析非線性極化率張量的不同元素對總二次諧波信號的貢獻(xiàn),發(fā)現(xiàn)d33在其中起主要作用,為有效利用d33需使泵浦光沿晶體光軸方向入射,實(shí)驗(yàn)測得這種由電貢獻(xiàn)主導(dǎo)的共振模式所產(chǎn)生的最大SHG轉(zhuǎn)換效率可達(dá)10??。

2021年,許京軍教授課題組進(jìn)一步利用FIB銑削技術(shù)研制了鈮酸鋰納米光柵超構(gòu)表面結(jié)構(gòu),并實(shí)現(xiàn)了在可見光范圍內(nèi)的可調(diào)SHG特性。圖5(a)給出了非線性鈮酸鋰超構(gòu)表面SHG的原理圖,并在插圖中展示了所制備的超構(gòu)表面截面的典型SEM圖像。

通過調(diào)整幾何參數(shù)從而調(diào)整超構(gòu)表面的共振來選擇性地提高不同波長的SHG效率,在強(qiáng)度為2.05GWcm?2的s偏振光泵浦下,SHG轉(zhuǎn)換效率約為2×10??,為未加工的薄膜區(qū)域的兩倍,如圖5(b)所示。

f88d5ae6-83b6-11ed-bfe3-dac502259ad0.png

圖5(a)非線性鈮酸鋰超構(gòu)表面的SHG示意圖。左下插圖為D=600nm的超構(gòu)表面截面的典型SEM圖像,右下插圖顯示了研究中使用的鈮酸鋰薄膜的測量二階極化率;(b)超構(gòu)表面SHG效率的光譜依賴性

2021年,德國耶拿大學(xué)Chekhova教授課題組制備出在信號和空閑光子頻率處具備基本電磁共振的鈮酸鋰截斷金字塔陣列超構(gòu)表面,利用該結(jié)構(gòu)進(jìn)行自發(fā)參量下轉(zhuǎn)換(spontaneous parametric downconversion,SPDC)過程的原理如圖6(a)所示。通過測量來自超構(gòu)表面的SPDC光譜(如圖6(b)所示)發(fā)現(xiàn),在共振頻率附近的窄帶寬內(nèi),光子對生成率相比于未加工的薄膜區(qū)域提高了兩個數(shù)量級(130倍)。

實(shí)驗(yàn)結(jié)果還證明,發(fā)射光子對的光譜寬度可以通過電共振波長與SPDC簡并波長之間的失諧來控制。該結(jié)構(gòu)使糾纏光子的平面光學(xué)源成為可能,并有望成為一種新的有前途的量子光學(xué)實(shí)驗(yàn)平臺。

f8dbe454-83b6-11ed-bfe3-dac502259ad0.png

圖6(a)鈮酸鋰超構(gòu)表面的SPDC:泵浦光從基板側(cè)入射,光子對在反射中收集。泵浦和SPDC光子都沿鈮酸鋰光軸z偏振;(b)從量子光學(xué)超構(gòu)表面測量的SPDC光譜?;疑秋@示來自未圖案化鈮酸鋰薄膜的SPDC光譜

電光調(diào)制

在過去的幾十年中,超構(gòu)表面在光場調(diào)控領(lǐng)域展現(xiàn)出了非凡能力。但目前的超構(gòu)表面在本質(zhì)上大多是靜態(tài)的,其光學(xué)特性在制造過程結(jié)束后就被固定下來。對超構(gòu)表面特性進(jìn)行調(diào)制可以為光場調(diào)控提供新的機(jī)會,從而促進(jìn)向動態(tài)光學(xué)器件的過渡。

因此,超構(gòu)表面特性的動態(tài)調(diào)控一直是研究的熱點(diǎn),許多不同的動態(tài)調(diào)諧機(jī)制也已經(jīng)趨于成熟,例如光泵浦、熱加熱、化學(xué)反應(yīng)和電刺激。在所有這些調(diào)控機(jī)制中,電場調(diào)控技術(shù)因有望將超構(gòu)表面與其它片上光電器件集成而引起了人們的廣泛關(guān)注。

鈮酸鋰晶體具有較寬的透明窗口(0.35μm~5μm),較高的折射率(765nm處n0=2.26)以及優(yōu)異的電光系數(shù)(r33=34pm/V),在電光調(diào)制研究方面具有廣泛的應(yīng)用。迄今為止,LNOI已經(jīng)成為超緊湊光子器件的一個有前途的平臺,包括電光調(diào)制器在內(nèi)的各種高質(zhì)量、高性能的功能性器件被成功演示。

得益于LNOI的結(jié)構(gòu)優(yōu)勢(鈮酸鋰薄膜和襯底(如SiO2)之間的大折射率對比度),光學(xué)模式被緊密限制在納米厚度的鈮酸鋰層內(nèi),從而進(jìn)一步提高了電光調(diào)制效率。通過使用不同的LNOI微結(jié)構(gòu),如馬赫-曾德爾干涉波導(dǎo)、光子晶體、微環(huán)或微盤等,具有數(shù)十到數(shù)百GHz調(diào)制速度的各種片上EO調(diào)制器單元已經(jīng)得以實(shí)現(xiàn)。

2020年,蘇黎世聯(lián)邦理工學(xué)院Grange教授課題組展示了具有高效EO調(diào)制性能的鈮酸鋰周期陣列的初步設(shè)計。2021年Grange教授課題組通過ICP-RIE技術(shù)制備出由線性EO效應(yīng)調(diào)諧的鈮酸鋰納米柱陣列超構(gòu)表面。該超構(gòu)表面由兩側(cè)的金電極驅(qū)動,其示意圖和SEM圖像如圖7(a)所示。圖7(b)展示了驅(qū)動電壓為2VPP時不同波長下的透射譜及調(diào)制增強(qiáng)因子,結(jié)果表明EO調(diào)制幅度與波長有關(guān),同時在超構(gòu)表面的光共振處觀察到透射光的調(diào)制強(qiáng)度增強(qiáng)了80倍,與未加工的薄膜區(qū)域相比增強(qiáng)了兩個數(shù)量級,這也是迄今為止最快和最強(qiáng)的EO調(diào)制超構(gòu)表面。這一概念證明工作向使用鈮酸鋰超構(gòu)表面進(jìn)行自由空間調(diào)制邁出了重要的第一步。

f8f7877c-83b6-11ed-bfe3-dac502259ad0.png

圖7(a)由金電極驅(qū)動的超構(gòu)表面結(jié)構(gòu)。左下插圖為超構(gòu)表面柱結(jié)構(gòu)的SEM圖像,右下插圖顯示了電極(黃色)之間幾個超構(gòu)表面(紫色)的偽色SEM;(b)半徑為135nm、周期為500nm的超構(gòu)表面的透射率(藍(lán)色線),橙色線表示2VPP和180kHz的交流電壓下的調(diào)制增強(qiáng)(定義為超構(gòu)表面的調(diào)制幅度除以未圖案化區(qū)域的調(diào)制幅度)

光無源功能

在LNOI片上光學(xué)器件中,非線性相位匹配條件通常是通過雙折射或鐵電疇的周期性反轉(zhuǎn)來實(shí)現(xiàn)的。然而,這兩者都需要額外的色散調(diào)控,并且通常是窄帶的。例如SHG的轉(zhuǎn)換帶寬通常在10nm以內(nèi),而SPDC的帶寬雖然可以通過設(shè)計不同的波導(dǎo)長度達(dá)到100nm以上,但在實(shí)際應(yīng)用方面仍然有很大的局限性。

針對這一局限性,在LNOI集成光子學(xué)中引入由周期性分布的納米天線組成的光學(xué)超構(gòu)表面結(jié)構(gòu),可以規(guī)避相位匹配要求。其基本方案是在片內(nèi)波導(dǎo)的頂部表面繪制一個梯度超構(gòu)表面結(jié)構(gòu),如圖8(a)所示。通過合理設(shè)計天線陣列和波導(dǎo)結(jié)構(gòu),可以任意控制波導(dǎo)內(nèi)的光傳播,從而實(shí)現(xiàn)非完美的相位匹配條件。

這種方案支持TE和TM偏振的光學(xué)元件,在非線性光學(xué)研究中具有顯著優(yōu)勢。圖8(b)顯示了基于超構(gòu)表面的非線性集成光子器件的工作原理,在被超構(gòu)表面圖案化的波導(dǎo)區(qū)域中,光功率首先從泵浦頻率下的基模TE00(ω)耦合到SH頻率下的基模TE00(2ω),然后在梯度超構(gòu)表面的幫助下耦合到SH頻率下的高階波導(dǎo)模式TEmn(2ω)和TMmn(2ω)。

f9105054-83b6-11ed-bfe3-dac502259ad0.jpg

圖8(a)集成梯度超構(gòu)表面的LiNbO3片上脊波導(dǎo),用于實(shí)現(xiàn)無相位匹配的二次諧波產(chǎn)生;(b)基于超構(gòu)表面無相位匹配的二次諧波產(chǎn)生原理圖

除波前調(diào)控外,鈮酸鋰超構(gòu)表面在光無源方面的應(yīng)用還體現(xiàn)在靈活分束和高靈敏傳感上。2018年,許京軍教授課題組報道了一種基于梯度超構(gòu)表面的可見光和近紅外光分束器。該超構(gòu)表面由兩排圓柱體組成,它們顯示出相反方向的相位梯度,從而將傳輸?shù)墓馐凵涞絻蓚€方向。此外,該分束器的分流比可以通過有選擇性地調(diào)整某排鈮酸鋰圓柱體的損耗水平來進(jìn)行靈活調(diào)節(jié)?;诖?,納米級尺寸分束器可廣泛應(yīng)用于制造小型光子器件,如微型干涉儀、集成光學(xué)電路的多路復(fù)用器等。

隨后,該課題組在負(fù)載SiO2的鈮酸鋰波導(dǎo)上設(shè)計了微棒陣列超構(gòu)表面的復(fù)合結(jié)構(gòu),展示了其作為太赫茲傳感通用設(shè)計的潛力。片上局域表面等離子體的近場耦合可以使表面波模式的約束更強(qiáng),沿波導(dǎo)的相互作用長度更長,這將有效地增加分子吸收,從而能夠檢測到薄乳糖層。當(dāng)固有特征頻率為0.529THz且乳糖層較薄時,透射光譜的選擇性顯著,與正常通過相同厚度的乳糖層透射太赫茲波時相比透射光譜強(qiáng)度增強(qiáng)了20倍。實(shí)驗(yàn)與模擬結(jié)果均表明,該結(jié)構(gòu)可以作為一種高靈敏度片上太赫茲傳感器,用于微量物質(zhì)的檢測。

總結(jié)與展望

本文綜述了LNOI薄膜片上光子學(xué)器件—鈮酸鋰超構(gòu)表面的最新研究進(jìn)展,包括有潛力的制備方案以及鈮酸鋰超構(gòu)表面在光頻轉(zhuǎn)換、電光調(diào)制、光無源等方面的應(yīng)用現(xiàn)狀。隨著近年來晶圓級、高質(zhì)量的LNOI薄膜制造技術(shù)的突破,基于LNOI薄膜的微納光學(xué)和集成光子學(xué)正處于快速發(fā)展階段。

各種高性能鈮酸鋰光子學(xué)器件的應(yīng)用已經(jīng)不僅限于線性和非線性光學(xué),甚至已經(jīng)擴(kuò)展到量子光學(xué)、腔電光學(xué)和壓電光機(jī)械等新興領(lǐng)域。眾多研究結(jié)果證明,鈮酸鋰超構(gòu)表面有利于制造具有高靈活性的超緊湊光子器件,同時展現(xiàn)出優(yōu)異的光學(xué)功能。在非線性光學(xué)領(lǐng)域,鈮酸鋰超構(gòu)表面的應(yīng)用不僅限于諧波與光子對產(chǎn)生,也有望應(yīng)用于其它非線性過程,如四波混頻、和頻產(chǎn)生、參數(shù)下轉(zhuǎn)換等,在生物傳感、量子光通信等領(lǐng)域都具有廣泛的應(yīng)用前景。

在電光調(diào)制領(lǐng)域,未來更多的工作應(yīng)致力于將器件調(diào)制范圍擴(kuò)展到GHz范圍內(nèi),以及通過優(yōu)化設(shè)計達(dá)到更好的電場和光場重疊或更高的Q因子共振,實(shí)現(xiàn)電光調(diào)制幅度的更強(qiáng)增強(qiáng),從而為空間光調(diào)制器在波前調(diào)控、脈沖整形、偏振控制等領(lǐng)域的發(fā)展奠定堅實(shí)基礎(chǔ)。此外,超構(gòu)表面與鈮酸鋰波導(dǎo)的耦合體系也有望實(shí)現(xiàn)高效耦合器、分束器、傳感器等多種光無源功能器件??傊?,基于超構(gòu)表面對光的靈活操縱特性及鈮酸鋰獨(dú)特的材料性質(zhì),鈮酸鋰超構(gòu)表面結(jié)構(gòu)在未來具有巨大的應(yīng)用潛力。






審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • CMP
    CMP
    +關(guān)注

    關(guān)注

    6

    文章

    141

    瀏覽量

    25892
  • 調(diào)制器
    +關(guān)注

    關(guān)注

    3

    文章

    826

    瀏覽量

    45053
  • fib
    fib
    +關(guān)注

    關(guān)注

    1

    文章

    22

    瀏覽量

    11039
  • 頻率轉(zhuǎn)換器
    +關(guān)注

    關(guān)注

    0

    文章

    21

    瀏覽量

    45832

原文標(biāo)題:鈮酸鋰超構(gòu)表面制備及光子學(xué)應(yīng)用

文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    玻色量子出席2024產(chǎn)業(yè)創(chuàng)新生態(tài)大會

    日前,2024年產(chǎn)業(yè)創(chuàng)新生態(tài)大會Lithium Niobate Industry Innovation & Ecology Conference(LIIEC-2024)在蘇州納米城成功
    的頭像 發(fā)表于 09-03 11:25 ?476次閱讀

    恒元光電成功研制出12英寸(直徑300mm)光學(xué)級晶體

    據(jù)麥姆斯咨詢報道,近日,山東恒元半導(dǎo)體科技有限公司(以下簡稱“恒元光電”)在濟(jì)南市“揭榜掛帥”科技計劃項(xiàng)目的支持下,成功研制出12英寸(直徑300mm)光學(xué)級晶體。
    的頭像 發(fā)表于 05-17 09:28 ?944次閱讀

    可批量制造的鉭集成光子芯片

    集成晶圓及高性能光子芯片制備領(lǐng)域取得突破性進(jìn)展,相關(guān)成果以《可批量制造的鉭集成光子芯片》(Lithium tantalate photo
    的頭像 發(fā)表于 05-10 09:12 ?578次閱讀
    可批量制造的鉭<b class='flag-5'>酸</b><b class='flag-5'>鋰</b>集成<b class='flag-5'>光子</b>芯片

    西安光機(jī)所在表面非線性光子學(xué)領(lǐng)域獲得新進(jìn)展

    圖1.表面結(jié)構(gòu)的電場分布(a-b)沒有ENZ薄膜(d-f)有ENZ薄膜 近日,中科院西安光機(jī)所瞬態(tài)光學(xué)與光子技術(shù)國家重點(diǎn)實(shí)驗(yàn)室非線性光子技術(shù)及應(yīng)用課題組在
    的頭像 發(fā)表于 04-25 06:34 ?349次閱讀
    西安光機(jī)所在<b class='flag-5'>超</b><b class='flag-5'>表面</b>非線性<b class='flag-5'>光子</b><b class='flag-5'>學(xué)</b>領(lǐng)域獲得新進(jìn)展

    低損耗薄膜光集成器件的研究進(jìn)展研究

    近年來,得益于薄膜晶圓離子切片技術(shù)和低損耗微納刻蝕工藝的飛速發(fā)展,薄膜光集成器件的性
    的頭像 發(fā)表于 04-24 09:11 ?1061次閱讀
    低損耗薄膜<b class='flag-5'>鈮</b><b class='flag-5'>酸</b><b class='flag-5'>鋰</b>光集成器件的研究進(jìn)展研究

    基于薄膜的高性能集成光子學(xué)研究

    3月25日,Marko Lon?ar 博士出席光庫科技與 HyperLight 聯(lián)合主辦的“薄膜光子學(xué)技術(shù)與應(yīng)用”論壇,并發(fā)表了題為“
    的頭像 發(fā)表于 03-27 17:18 ?744次閱讀
    基于薄膜<b class='flag-5'>鈮</b><b class='flag-5'>酸</b><b class='flag-5'>鋰</b>的高性能集成<b class='flag-5'>光子</b><b class='flag-5'>學(xué)</b>研究

    將薄膜光子技術(shù)應(yīng)用于新一代數(shù)據(jù)中心光收發(fā)器中

    3月25日,周建英博士出席了光庫科技和 HyperLight 聯(lián)合主辦的論壇,討論了薄膜光子學(xué)的最新進(jìn)展。
    的頭像 發(fā)表于 03-27 17:16 ?574次閱讀

    光庫科技攜手HyperLight聯(lián)合主辦“薄膜技術(shù)與應(yīng)用”論壇

    3月25日,由光庫科技與 HyperLight 聯(lián)合主辦的“薄膜技術(shù)與應(yīng)用”論壇在美國圣地亞哥會展中心舉行。
    的頭像 發(fā)表于 03-26 18:25 ?810次閱讀
    光庫科技攜手HyperLight聯(lián)合主辦“薄膜<b class='flag-5'>鈮</b><b class='flag-5'>酸</b><b class='flag-5'>鋰</b>技術(shù)與應(yīng)用”論壇

    光子集成芯片需要的材料有哪些

    光子集成芯片所需的材料多種多樣,主要包括硅、氮化硅、磷化銦、砷化鎵、等。這些材料各有其特性和應(yīng)用領(lǐng)域,適用于不同的光子器件和集成芯片設(shè)
    的頭像 發(fā)表于 03-18 15:27 ?1135次閱讀

    全球領(lǐng)先微波光子芯片問世,應(yīng)用廣泛

    顯眼的是,這項(xiàng)研究成果帶頭開創(chuàng)了全新的研究領(lǐng)域——微波光子學(xué)。在這項(xiàng)領(lǐng)域中,微波光子芯片體
    的頭像 發(fā)表于 03-07 14:10 ?733次閱讀

    全球首片8寸硅光薄膜光電晶圓下線

    由于出色的性能,薄膜在諸如濾波器、光通訊、量子通信以及航空航天等多個領(lǐng)域都發(fā)揮了關(guān)鍵角色。然而,大尺寸
    的頭像 發(fā)表于 03-04 11:37 ?644次閱讀

    芯片與精密劃片機(jī):科技突破引領(lǐng)半導(dǎo)體制造新潮流

    在當(dāng)今快速發(fā)展的半導(dǎo)體行業(yè)中,一種結(jié)合了芯片與精密劃片機(jī)的創(chuàng)新技術(shù)正在嶄露頭角。這種技術(shù)不僅引領(lǐng)著半導(dǎo)體制造領(lǐng)域的進(jìn)步,更為其他產(chǎn)業(yè)帶來了前所未有的變革。
    的頭像 發(fā)表于 02-18 15:39 ?637次閱讀
    <b class='flag-5'>鈮</b><b class='flag-5'>酸</b><b class='flag-5'>鋰</b>芯片與精密劃片機(jī):科技突破引領(lǐng)半導(dǎo)體制造新潮流

    一個基于薄膜的集成光子平臺開發(fā)

    研究人員正在利用光子學(xué)來開發(fā)和擴(kuò)展硬件,以滿足量子信息技術(shù)的嚴(yán)格要求。通過利用光子學(xué)的特性,研究人員指出了縮放量子硬件的好處。
    的頭像 發(fā)表于 01-25 09:14 ?696次閱讀
    一個基于薄膜<b class='flag-5'>鈮</b><b class='flag-5'>酸</b><b class='flag-5'>鋰</b>的集成<b class='flag-5'>光子</b>平臺開發(fā)

    半導(dǎo)體資料丨光子集成電路、碳化硅光子應(yīng)用、ACL蝕刻

    mA/mm的ID,最大值和27Ω·mm的RON,創(chuàng)下了金屬有機(jī)化學(xué)氣相沉積(MOCVD)生長的III族氮化物p-FET的記錄。 高密度光子集成電路 在這里,我們證明了類金剛石碳
    的頭像 發(fā)表于 01-16 17:12 ?637次閱讀
    半導(dǎo)體資料丨<b class='flag-5'>鈮</b><b class='flag-5'>酸</b><b class='flag-5'>鋰</b><b class='flag-5'>光子</b>集成電路、碳化硅<b class='flag-5'>光子</b>應(yīng)用、ACL蝕刻

    研發(fā)光學(xué)級晶體材料,恒元光電獲數(shù)千萬元政府投資

    據(jù)了解,恒元光電是一家專業(yè)從事、鉭等光電材料、壓電材料研發(fā)、生產(chǎn)及銷售于一體的新興科技型企業(yè)。公司位于山東省濟(jì)南市,核心技術(shù)團(tuán)隊(duì)起
    的頭像 發(fā)表于 11-25 11:43 ?1284次閱讀