0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Li+交換電流密度和CE關(guān)系如何?最佳SEI該如何設計?

清新電源 ? 來源:能源學人 ? 2023-04-17 09:43 ? 次閱讀

第一作者:Gustavo M. Hobold

通訊作者:Betar M. Gallant

通訊單位:美國麻省理工學院

【研究背景】

鋰金屬負極作為當今最引人注目的替代石墨負極的候選者,在滿足鋰離子電池能量密度(>500 Wh/kg)方面發(fā)揮著重要作用,但其還未達到實現(xiàn)長循環(huán)壽命和庫倫效率(CE)要求。其中,低CE主要源于SEI的不穩(wěn)定,一個好的SEI不僅能夠穩(wěn)定和保護沉積的Li,還調(diào)節(jié)電解液和電極之間的Li+傳輸。因此,SEI對界面的輸運和動力學產(chǎn)生深遠的影響。然而,迄今為止Li+交換和CE之間的關(guān)系還沒有明確闡明。

2f1327e2-dcab-11ed-bfe3-dac502259ad0.png

圖1. 從電解液體相到鋰金屬電極的Li0/Li+氧化還原過程的示意圖,突出SEI的重要性。

【成果簡介】

鑒于此,美國麻省理工學院Betar M. Gallant通過電化學阻抗圖譜和循環(huán)伏安法,研究了在一系列相關(guān)電解液(CE在78%~>99%范圍)下原生的SEIs上的Li+交換電流密度(j0)值。在高CE電解液的循環(huán)過程中,SEI Li+的交換增加,而對于低CE電解液,保持在低水平,結(jié)果表明CE及其在高倍率下的保持率與SEI Li+交換電流呈正相關(guān)。此外,高CE電解液特有的Li+交換電流也為第一步電沉積時對Cu電流集流體的作用和有效性提供了見解??傊@些發(fā)現(xiàn)表明Li+交換電流控制著與Li沉積和循環(huán)庫倫效率相關(guān)的幾個關(guān)鍵過程,因此,它的量化可以幫助指導未來的高CE電解液設計,尤其是高倍率性能。相關(guān)研究成果以“Beneficial vs. Inhibiting Passivation by the Native Lithium Solid Electrolyte Interphase Revealed by Electrochemical Li+ Exchange”為題發(fā)表在Energy & Environmental Science上。

【核心內(nèi)容】

阻抗圖譜測定Li+交換

如圖2a所示,總結(jié)了1.5 M LiAsF6(2-Me-THF)、1 M LiClO4(PC)、1M LiPF6(EC/DEC)、1M LiFSI(FEC)、1M LiPF6(EC/DMC)、2M LiFSI(FEC)和7M LiFSI(FEC)電解液的庫倫效率,分別為78%、81.9%、93.8%、95.3%、96.9%、97.5%和98.2%。然后,兩種含有添加劑的電解質(zhì):1 M LiTFSI(DOL/DME)和2 M LiFSI/1 M LiTFSI(DOL/DME)含有3 wt%的LiNO3,庫倫效率分別為為99.0%和99.3%,包括8種不同的溶劑和6種不同的鹽。如圖2b所示,在電池組裝后,在原始狀態(tài)下進行初始阻抗譜,在OCV下5小時后進行預循環(huán),用藍色圓圈表示,建立完整的SEI,然后進行完整的沉積/剝離循環(huán)。如圖2c顯示了三種代表性電解液前五個循環(huán)中的EIS數(shù)據(jù),對應圖2a中有顏色的柱狀圖,圖譜都是由高頻的半圓和一個低頻的尾部組成,與等效電路擬合數(shù)據(jù)吻合。隨著沉積/剝離過程會產(chǎn)生更小的半圓,歸因于原始表面膜的破壞和原生SEI的形成。但是經(jīng)過5次循環(huán)后,不同電解質(zhì)的RSEI值顯著不同(如圖2d),1.5 M LiAsF6(2-Me-THF)的RSEI值最高為512.6 Ω cm2,其次是1 M LiPF6(EC/DMC)的47.6 Ω cm2和1 M LiTFSI(DOL/DME+3 wt% LiNO3)的18.3 Ω cm2,而基于“偽”交換電流的框架內(nèi)解釋測得的交換率2f1be760-dcab-11ed-bfe3-dac502259ad0.png,EIS從0.03、0.30到0.79 mA/cm2呈現(xiàn)上升的趨勢。

2f24b048-dcab-11ed-bfe3-dac502259ad0.png

圖2. 電化學阻抗譜(EIS)法測定Li+交換。

圖3a為每種電解液在高頻區(qū)超過50圈的2f1be760-dcab-11ed-bfe3-dac502259ad0.png,EIS,在較長的循環(huán)中發(fā)現(xiàn)2f1be760-dcab-11ed-bfe3-dac502259ad0.png,EIS的兩種類型。第一種(Ⅰ型)是比較穩(wěn)定的:1.5 M LiAsF6(2-Me-THF)、1 M LiClO4(PC)、1M LiPF6(EC/DEC)、1M LiFSI(FEC)和1M LiPF6(EC/DMC);第二種(Ⅱ型)是隨著循環(huán)逐漸增加的:2M LiFSI(FEC)、7M LiFSI(FEC)、1 M LiTFSI(DOL/DME+3 wt% LiNO3)和2 M LiFSI/1 M LiTFSI(DOL/DME+3 wt% LiNO3)。2f1be760-dcab-11ed-bfe3-dac502259ad0.png,EIS的變化匯總?cè)鐖D3b所示,每圈的平均變化突出了2型電解質(zhì)下2f1be760-dcab-11ed-bfe3-dac502259ad0.png,EIS的增加。2f1be760-dcab-11ed-bfe3-dac502259ad0.png,EIS的變化可能有兩個來源:(1)SEI內(nèi)部Li+交換速率的增加,例如化學成分的差異及其在循環(huán)中的演變,其中非活性材料的積累不會抑制總Li+的交換速率;(2)由于表面粗糙,Li+/Li0氧化還原的電化學活性區(qū)域增加。Ⅰ型電解質(zhì)對應那些低CE范圍,具有多孔和高長徑比鋰沉積形態(tài)(如圖3c),即1.5 M LiAsF6(2-Me-THF, CE = 78.9%)和1 M LiPF6(EC/DEC, CE = 96.9%),而Ⅱ型電解液呈現(xiàn)出致密的Li沉積形態(tài)(如圖3c)。此外,對Ⅰ型和Ⅱ型電解質(zhì)5次循環(huán)后的電鍍鋰電極的SEM圖像進行比較,證實了Ⅰ型電解質(zhì)具有更高的表面積和更多不規(guī)則的沉積物(如圖3c)。

2f4d2f96-dcab-11ed-bfe3-dac502259ad0.png

圖3. Li+在Li負極上的交換。

進一步探討高CE電解液中高頻Li+交換是否持續(xù)增加,如圖4a所示,基于DOL/DME的電解質(zhì)進一步增加了大約10個額外的循環(huán),但2f1be760-dcab-11ed-bfe3-dac502259ad0.png,EIS的值最終穩(wěn)定在60個循環(huán)左右,如8.3 mA/cm2的2 M LiFSI/1 M LiTFSI(DOL/DME+3 wt% LiNO3)和5.7 mA/cm2的1 M LiTFSI(DOL/DME+3 wt% LiNO3)。與低CE電解液(0.39 mA/cm2的1 M LiClO4 PC)相比,這個穩(wěn)定值要高得多(如圖4a)。雖然這種行為的潛在原因還不完全清楚,但一種可能的解釋如圖4b所示,在低CE電解液中,殘留的SEI有低的Li+交換值,在后續(xù)循環(huán)中,新沉積的Li的優(yōu)先成核優(yōu)勢不大。而在高CE的電解液中,前一循環(huán)的SEI殘留物可能在鍍鋰中保持活性,并可被積聚。如圖4c所示,即使在延長循環(huán)后,Ⅱ型電解質(zhì)的Li形態(tài)仍然緊密,而Ⅰ型電解質(zhì)繼續(xù)發(fā)展高多孔的Li微結(jié)構(gòu)。

如圖4d所示,在Ⅰ型電解質(zhì)中,EIS圖譜在循環(huán)過程中基本保持不變,與它們穩(wěn)定的Li+交換速率一致,并保持為單個半圓。另一方面,Ⅱ型電解質(zhì)表現(xiàn)出動態(tài)的阻抗響應,如圖4e所示,在初始循環(huán)階段,圖譜顯示為高頻的半圓和一個小的低頻末尾。在后面的循環(huán)中,內(nèi)部半圓的大小顯著減小,這是Ⅱ型電解質(zhì)中Li+交換增加的基礎(chǔ)。而低頻末尾變成一個更大、獨特的第二個半圓。如圖4f所示,低頻特征表明在循環(huán)過程中可能通過一種額外的機制阻礙Li+交換,抵消了高頻下致密SEI阻抗的下降,與電解液中通過多孔電極Li+擴散相關(guān)。

2f62243c-dcab-11ed-bfe3-dac502259ad0.png

圖4. Li+交換延長了恒流循環(huán)。

循環(huán)伏安測定Li+交換

循環(huán)伏安法測量Cu/Li電池,以測量SEI在更接近初始SEI形成的條件下進行Li+交換。如圖5a為在-0.2 V到1V之間,以1 mV/s的速度對Cu/Li電池中進行了11個連續(xù)的CV循環(huán),每次掃描結(jié)束時銅都完全溶出。在1 M LiPF6(EC/DEC)電解液樣品中,如圖5b為在原始Cu上獲得的電流-電壓曲線,顯示了典型的金屬沉積到惰性基底上的行為。在正向掃描中,鋰首先被沉積在銅上,在所有循環(huán)中都需要一個~100 mV的過電位來開始沉積鋰。在反向掃描時,Li繼續(xù)被沉積在Cu上,直到電壓超過平衡電位,之后Li從Cu中被剝離。該方法測定的初始、沉積和完全剝離Cu集電極的Li+交換如圖5c所示,1 M LiPF6(EC/DEC)中初始Cu電極的2f1be760-dcab-11ed-bfe3-dac502259ad0.png,CV是低的(0.02 mA/cm2),但在電極上沉積上Li后大幅增加并穩(wěn)定在0.26 mA/cm2。在Li被剝離后,與原始Cu電極相比,沉積Li電極的狀態(tài)更接近于2f1be760-dcab-11ed-bfe3-dac502259ad0.png,CV,即在第1個CV循環(huán)中最初為0.40 mA/cm2,在第11個CV循環(huán)中穩(wěn)定在0.19 mA/cm2左右。綜上所述,證實了鋰沉積行為與表面條件及其來源密切相關(guān)。

2f8a9c14-dcab-11ed-bfe3-dac502259ad0.png

圖5. 循環(huán)伏安法及Li電鍍和剝離的2f1be760-dcab-11ed-bfe3-dac502259ad0.png,CV。

在其他電解液中對鋰沉積進行了伏安分析,圖6a為三種電解液的Tafel曲線,其中j-Ew越陡,表明接近平衡的關(guān)系越高。在高過電位時表現(xiàn)出典型的Tafel行為,即圖6a所示的Ew-logj線性行為。如圖6b為在所有電解質(zhì)中CV掃描圈數(shù)與2f1be760-dcab-11ed-bfe3-dac502259ad0.png,CV的函數(shù),第一次掃描2f1be760-dcab-11ed-bfe3-dac502259ad0.png,CV值從非常低0.01 mA/cm2(1.5 M LiAsF6,2-Me-THF)到(2 M LiFSI FEC)的1.21 mA/cm2。在低CE電解質(zhì)中,2f1be760-dcab-11ed-bfe3-dac502259ad0.png,CV基本不變,而在高CE中,隨著CV圈數(shù)的增加每次顯示出小幅但持續(xù)的增加。為了更系統(tǒng)地評價,設計用于測量的Li/Li電池中進行了額外的實驗,并在等效循環(huán)容量的相同電池中進行了測量2f1be760-dcab-11ed-bfe3-dac502259ad0.png,CV和2f1be760-dcab-11ed-bfe3-dac502259ad0.png,EIS,在這些條件下,表現(xiàn)出出良好的定量對應關(guān)系(如圖6c-d)。值得注意的是,圖6a-b中的鋰沉積測試,在所有掃描結(jié)束時,在2f1be760-dcab-11ed-bfe3-dac502259ad0.png,CV和CE之間觀察到成正相關(guān)(如圖6e-f),表明快速Li+交換是區(qū)分高與低CE電解液的一個關(guān)鍵特性。

2fccf442-dcab-11ed-bfe3-dac502259ad0.png

圖6. 通過伏安法在沉積鋰上捕捉Li+的交換。

2fdb3908-dcab-11ed-bfe3-dac502259ad0.png-CE關(guān)系的討論

圖7a顯示了所有電解液下初始Cu的前11次CV掃描的2f1be760-dcab-11ed-bfe3-dac502259ad0.png,CV值,其表現(xiàn)出一定的分散且取決于電解液,但通常較低。如圖7b經(jīng)過1mAh/cm2的恒電流循環(huán),在某些電解液中觀察到Li+交換速率的明顯上升。圖7c-d進一步描述,在11次CV后總結(jié)了恒電流循環(huán)前和后的2f1be760-dcab-11ed-bfe3-dac502259ad0.png,CV值,首先在1 mAh/cm2沉積步驟之前,Cu沒有發(fā)現(xiàn)相關(guān)性(如圖7c),對比沉積后,觀察到2f1be760-dcab-11ed-bfe3-dac502259ad0.png,CV與CE之間存在很強的單調(diào)趨勢。這一發(fā)現(xiàn)表明,與Li的趨勢相似,高CE電解液也能更有效地改變Cu-電解液界面,圖7e充分總結(jié)了Cu剝后CE-2f1be760-dcab-11ed-bfe3-dac502259ad0.png,CV的單調(diào)關(guān)系。

2ffa2b9c-dcab-11ed-bfe3-dac502259ad0.png

圖7. Cu形成循環(huán)對Li+交換和CE的影響。

圖8a為1 M LiPF6 EC/DEC(Ⅰ型電解液),圖8b為2 M LiFSI/1 M LiTFSI DOL/DME+3 wt% LiNO3(Ⅱ型電解液),其來自圖7a-b中CV掃描。首先觀察Ⅰ型電解液(如圖8a),隨著2f1be760-dcab-11ed-bfe3-dac502259ad0.png,CV循環(huán)從1到10,每圈的CE單調(diào)增加。在1 mAh/cm2恒流循環(huán)后,2f1be760-dcab-11ed-bfe3-dac502259ad0.png,CV增加到更高的值,伴隨CE的改善,在Ⅱ型電解液中觀察到類似的行為(如圖8b)。這些結(jié)果與之前關(guān)于這兩個參數(shù)的關(guān)系一致,表明在每個周期的中CE與Li+交換密切相關(guān)。

30119c00-dcab-11ed-bfe3-dac502259ad0.png

圖8. 在不同電解液下恒流充放電前后每圈的CE和2f1be760-dcab-11ed-bfe3-dac502259ad0.png,CV。

對Li倍率性能的影響

研究了不同電解質(zhì)中Li+交換對可獲得的速率能力的影響,如圖9所示,在Ⅰ型和Ⅱ型電解質(zhì)中CE和電流密度的函數(shù)關(guān)系。Ⅰ型碳酸鹽電解質(zhì)(1 M LiPF6 EC/DEC和1M LiClO4 PC)的CE隨電流密度的增加而不穩(wěn)定,在高電流密度時CE值普遍下降。在1 M LiClO4 PC中最為明顯,在0.2 mA/cm2和2 mA/cm2之間CE從87.1%下降到76.9%。而Ⅱ型電解質(zhì)(2 M LiFSI FEC、M LiTFSI DOL/DME+3 wt% LiNO3和2 M LiFSI/1 M LiTFSI DOL/DME+3 wt% LiNO3)的CE值隨循環(huán)電流密度的增加不發(fā)生變化。與Ⅰ型電解液相比,Ⅱ型電解液在持續(xù)循環(huán)中表現(xiàn)出可變的Li+交換,這一因素可能會增強其高速率良好循環(huán)的能力。

3020fd12-dcab-11ed-bfe3-dac502259ad0.png

圖9. 不同電解液在不同電流密度下的CE。

【結(jié)論展望】

本文利用EIS和CV兩種電化學技術(shù),研究在低CE和高CE電解液下形成的Li SEIs中進行的Li+交換,為Li+交換率的定量提供了獨特但互補的方法。低CE電解液中表現(xiàn)出穩(wěn)定和適度的Li+交換速率,高CE電解質(zhì)表現(xiàn)出更高的總Li+交換率,并在循環(huán)過程中進一步增加。結(jié)果發(fā)現(xiàn)CE和Li+交換電流之間存在緊密的正相關(guān)關(guān)系,從而表明快速Li+交換的電解液與高CE相關(guān)。此外,結(jié)果還表明與循環(huán)后的Cu相比,未循環(huán)Cu上的Li+交換更緩慢,原始Cu上的CE相應更低,為在第一個沉積鋰步驟中發(fā)生的潛在過程提供了見解。最后,這些發(fā)現(xiàn)有助于電解液設計的新框架,以最大化SEI相,促進便利的Li+交換,對Li+交換和可逆性產(chǎn)生深遠的影響。






審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 鋰離子電池
    +關(guān)注

    關(guān)注

    85

    文章

    3186

    瀏覽量

    77395
  • SEM
    SEM
    +關(guān)注

    關(guān)注

    0

    文章

    191

    瀏覽量

    14400
  • 電解液
    +關(guān)注

    關(guān)注

    10

    文章

    834

    瀏覽量

    23015
  • OCV
    OCV
    +關(guān)注

    關(guān)注

    0

    文章

    25

    瀏覽量

    12502
  • EIS
    EIS
    +關(guān)注

    關(guān)注

    0

    文章

    26

    瀏覽量

    8806

原文標題:?美國麻省理工學院EES:Li+交換電流密度和CE關(guān)系如何?最佳SEI該如何設計?

文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    磁化電流密度和傳導電流密度關(guān)系

    磁化電流密度和傳導電流密度是兩個相關(guān)但又不完全一致的物理概念,它們在電磁學和材料科學領(lǐng)域中各自扮演著重要的角色。以下是關(guān)于這兩者關(guān)系的分析: 一、定義與特性 磁化電流密度 : 定義:磁
    的頭像 發(fā)表于 10-09 09:30 ?230次閱讀

    用TL431LI-Q1監(jiān)控電流供應

    電子發(fā)燒友網(wǎng)站提供《用TL431LI-Q1監(jiān)控電流供應.pdf》資料免費下載
    發(fā)表于 09-18 11:13 ?1次下載
    用TL431<b class='flag-5'>LI</b>-Q1監(jiān)控<b class='flag-5'>電流</b>供應

    傳輸阻抗?jié)M足CE101底噪要求的幾款電流探頭介紹

    探頭傳輸阻抗,即采用電流探頭,接收機測量得到的感應電流底噪應滿足低于CE101限值至少6dB。然而部分電磁兼容實驗室由于電流探頭選擇不合適
    的頭像 發(fā)表于 09-04 10:45 ?186次閱讀
    傳輸阻抗?jié)M足<b class='flag-5'>CE</b>101底噪要求的幾款<b class='flag-5'>電流</b>探頭介紹

    逆變器輸入電流和輸出電流關(guān)系

    逆變器輸入電流和輸出電流關(guān)系是一個涉及電力電子學基本原理的重要話題。以下是對這一關(guān)系的詳細探討,包括逆變器的基本概念、工作原理、輸入輸出電流
    的頭像 發(fā)表于 07-24 17:30 ?1135次閱讀

    過電壓和過電流保護IC和Li+充電器前端保護IC bq2431x數(shù)據(jù)表

    電子發(fā)燒友網(wǎng)站提供《過電壓和過電流保護IC和Li+充電器前端保護IC bq2431x數(shù)據(jù)表.pdf》資料免費下載
    發(fā)表于 04-08 10:16 ?0次下載
    過電壓和過<b class='flag-5'>電流</b>保護IC和<b class='flag-5'>Li+</b>充電器前端保護IC bq2431x數(shù)據(jù)表

    過電壓和過電流保護IC和Li+充電器前端保護IC bq24300和bq24304數(shù)據(jù)表

    電子發(fā)燒友網(wǎng)站提供《過電壓和過電流保護IC和Li+充電器前端保護IC bq24300和bq24304數(shù)據(jù)表.pdf》資料免費下載
    發(fā)表于 04-08 10:15 ?0次下載
    過電壓和過<b class='flag-5'>電流</b>保護IC和<b class='flag-5'>Li+</b>充電器前端保護IC bq24300和bq24304數(shù)據(jù)表

    交換機cpu和交換芯片的關(guān)系

    交換機CPU和交換芯片在網(wǎng)絡設備中共同工作,它們之間的關(guān)系可以類比為大腦與肌肉的關(guān)系。CPU負責決策和控制,而交換芯片負責執(zhí)行這些決策的物理
    的頭像 發(fā)表于 03-22 16:34 ?966次閱讀

    交換機cpu和交換芯片的關(guān)系及區(qū)別

    交換機CPU和交換芯片在交換機中各自扮演著重要的角色,并且它們之間存在一定的關(guān)系與區(qū)別。
    的頭像 發(fā)表于 03-18 14:06 ?1416次閱讀

    電源設計如果只看電壓跌落,不看電流密度會怎么樣?

    東西,電壓我們關(guān)注了鏈路和最終負載端的值,那電流呢?當然高速先生說的不是只是關(guān)注上面寫著的2.5A電流,而是和電壓在銅皮上的分布一樣,我們也需要去關(guān)注下電流在上面的分布,給它一個專業(yè)名詞,叫
    發(fā)表于 01-24 15:26

    電源設計如果只看電壓跌落,不看電流密度會怎么樣?

    在電源設計中,負載端的電壓跌落是最終的結(jié)果,通道上的電流密度是中間的過程,如果過程都沒處理好,你覺得最終的結(jié)果能好嗎?
    的頭像 發(fā)表于 01-24 15:24 ?896次閱讀
    電源設計如果只看電壓跌落,不看<b class='flag-5'>電流密度</b>會怎么樣?

    電源設計如果只看電壓跌落,不看電流密度會怎么樣?

    電源設計如果只看電壓跌落,不看電流密度會怎么樣? 電源設計是一項非常重要的工程設計任務,它的目標是為各種設備和系統(tǒng)提供穩(wěn)定可靠的電力供應。在電源設計中,我們通常需要同時考慮電壓跌落和電流密度兩個方面
    的頭像 發(fā)表于 01-22 15:49 ?662次閱讀

    高性能全固態(tài)鋰電池接口設計

    全固態(tài)電池存在高界面電阻和鋰枝晶生長的問題,導致其鍍鋰/剝離庫侖效率(CE)低于90%,高容量時臨界電流密度低。
    的頭像 發(fā)表于 01-19 09:17 ?732次閱讀
    高性能全固態(tài)鋰電池接口設計

    MXene水溶液潤滑的長壽命高電流密度摩擦伏特納米發(fā)電機

    摩擦伏特納米發(fā)電機(TVNG)具有高電流密度、低匹配阻抗和連續(xù)輸出等特點,有望解決小型電子器件的供電問題。
    的頭像 發(fā)表于 12-11 09:25 ?754次閱讀
    MXene水溶液潤滑的長壽命高<b class='flag-5'>電流密度</b>摩擦伏特納米發(fā)電機

    uPOL封裝技術(shù)如何實現(xiàn)高電流密度供電突破

    uPOL封裝技術(shù)如何實現(xiàn)高電流密度供電突破
    的頭像 發(fā)表于 12-01 16:12 ?702次閱讀
    uPOL封裝技術(shù)如何實現(xiàn)高<b class='flag-5'>電流密度</b>供電突破

    電解液與SEI關(guān)系?電解液對SEI的影響?

    電解液與SEI關(guān)系?電解液對SEI的影響? 電解液與固體電解質(zhì)膜(SEI)是電化學儲能器件(如鋰離子電池、鈉離子電池等)中的兩個重要組成部分。電解液在電化學反應中發(fā)揮著重要的作用,而
    的頭像 發(fā)表于 11-10 14:58 ?627次閱讀