0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

尉海軍團隊高價W摻雜策略來調(diào)節(jié)高內(nèi)正極納米疇結(jié)構(gòu)和初級粒子

清新電源 ? 來源:清新電源 ? 2023-05-24 15:43 ? 次閱讀

研究背景

傳統(tǒng)的高鎳正極材料的穩(wěn)定策略,如表面包覆和元素?fù)诫s,通常對微觀結(jié)構(gòu)的調(diào)節(jié)影響較小,因此很難緩解相變過程中積累的應(yīng)變導(dǎo)致的結(jié)構(gòu)降解。微觀結(jié)構(gòu)起著至關(guān)重要的作用,但對無鈷高鎳正極材料的微觀結(jié)構(gòu)難以調(diào)節(jié)和優(yōu)化。引入高鎳正極材料中的高價(≥+5)離子(如Ta,W)有望對微觀結(jié)構(gòu)產(chǎn)生多種影響,以調(diào)節(jié)局部原子/電子結(jié)構(gòu)和調(diào)整初級粒子的形態(tài),這對調(diào)節(jié)相變和粒子裂解至關(guān)重要。然而,高價摻雜劑調(diào)節(jié)納米晶體域局部結(jié)構(gòu)的機制仍存在爭議,需要進一步研究通過該方法優(yōu)化無鈷高鎳正極材料。

成果簡介

在本研究中,提出了一種高價摻雜策略來調(diào)節(jié)納米疇結(jié)構(gòu)和初級粒子,以增強的典型無鈷高鎳正極材料的電化學(xué)穩(wěn)定性(LiNi0.94Co0.05Mn0.01O2,NCM94)。通過適當(dāng)控制合成過程,可以將高價W離子固定在NCM94的晶格中,調(diào)整其生長,形成排列的棒狀初級粒子。更重要的是,W摻雜劑可以調(diào)整NCM94的微觀結(jié)構(gòu),從而形成納米大小的尖晶石/巖鹽晶體域。結(jié)果表明,W摻雜NCM94的結(jié)構(gòu)轉(zhuǎn)變和累積應(yīng)變可被顯著抑制,從而提高了Li+插入/萃取的可逆性和循環(huán)性能。該成果以《Grain Morphology and Microstructure Control in High-Stable Ni-Rich Layered Oxide Cathodes》為題發(fā)表在國際頂級期刊《Adv. Funct. Mater.》上。

研究亮點

通過高價金屬元素W摻雜,獲得了由沿徑向延伸的棒狀初級粒子組成的正極材料,并預(yù)先引入了尖晶石疇結(jié)構(gòu)。

通過改性得到的正極材料提供顯著提高電化學(xué)性能,摻雜W可以阻礙深電荷態(tài)下有害的H2→H3相變,減輕嚴(yán)重的晶格收縮和相關(guān)的微裂紋,抑制Ni4+化學(xué)不穩(wěn)定的產(chǎn)生,1C循環(huán)300圈的容量保留為91.6%。

圖文導(dǎo)讀

為了研究W對初級粒子的影響,該工作分析了三種材料的橫截面紋理。s0的由隨機分布的不規(guī)則多邊形初級粒子組成二次粒子,由于顆粒粗化,彼此之間沒有明顯的空間關(guān)系(圖1a,b)。然而,W摻雜的S1和S2的初級粒子呈棒狀顆粒,呈徑向分布形成次級粒子(圖1d、e)。作為探測晶體結(jié)構(gòu)和取向分布的補充技術(shù),該工作采用電子后向散射衍射(EBSD)來分析S0和S1的晶體結(jié)構(gòu)。S0(圖1b)和S1(圖1e)的EBSD圖清楚地顯示,W摻雜后,S1的初級顆粒尺寸明顯減小,且呈均勻分布。圖1c、f中的極圖像和逆極圖像清楚地表明,S1的初級粒子優(yōu)先沿(001)方向生長。

d76fe84a-fa05-11ed-90ce-dac502259ad0.png

圖1。初級粒子的形態(tài)和取向作為W摻雜劑的函數(shù)。a,d)S0(a)和S1 (d).的橫斷面掃描電鏡圖像(d)中的插圖是S1的亮場透射電鏡圖像。b,e)S0(b)和S1(e)的晶體取向分布的EBSD IPF-Z圖。c,f)S0 (c)和S1(f)的EBSD極點圖。g,h)由EBSD圖計算出的S0 (g)和S1 (h)的初級粒子的尺寸分布。

通過對XRD數(shù)據(jù)精修(圖2a),表明晶格參數(shù)c和單元體積單調(diào)增加隨著W含量的增加。軟x射線吸附光譜(sXAS),在總電子產(chǎn)率(TEY)模式下測量,滲透深度為≈10nm,主要探測表面信息,進一步揭示了摻雜/不摻雜W的正極材料的電子結(jié)構(gòu)。圖2d顯示了S0和S1的Nil3邊sXAS光譜,以及參考一氧化鎳。兩種材料均表現(xiàn)出特征的Nil3邊光譜,在852.8 eV(A1)和854.5 eV(A2)處有兩個分裂峰,與之前的報道一致。一般來說,A2/A1的強度比越高,說明Ni的氧化態(tài)越高。s1的sXASNil3邊緣的A2峰強度明顯降低,表明W摻雜后Ni氧化態(tài)下降。同時,圖2e中Ok-esXAS譜的前邊緣區(qū)域存在顯著差異。527.8 eV的主前邊峰是O1s電子向Ni3+ 3d-O 2p雜化軌道的過渡,531.7 eV的峰值反映了Ni2+ 3d-O 2p雜化水平, 533.8 eV的峰值與Li2CO3有關(guān)。與S0相比,S1具有加強531.7 eV峰但減弱527.8 eV峰,表明摻雜高價W后鎳的氧化態(tài)減少。此外,低強度的峰值在533.8eVS1表明S1對空氣比S0更穩(wěn)定(圖2e)。

此外,x射線光電子能譜(XPS)結(jié)果見圖2f表明,隨著W含量的增加,Ni2+的含量顯著增加,這與硬XAS的結(jié)果一致。擬合的W 4f光譜表明,W6+陽離子占主導(dǎo)地位。

d77c1462-fa05-11ed-90ce-dac502259ad0.png

圖2。體積和表面的化學(xué)和結(jié)構(gòu)表征。a)通過Rietveld細化得到S0-S2的細胞參數(shù)a、c和Li/Ni無序度。b)NCM超級晶胞計算模型。c)W在不同位點(Ni、Co、Mn、Li)被取代的生成能。在TEY模式下收集的S0和S1的光譜。f)Ni2p XPS譜擬合結(jié)果得到S0-S2中Ni2+組分。

為了評價W摻雜劑對電化學(xué)性能的影響,該工作對s0、s1和s2進行了一系列的電化學(xué)分析。在第一次0.1 C的恒流循環(huán)中,S0、S1和S2的放電能力相當(dāng),但隨著W含量的增加,放電效率略有下降,庫侖效率最高可達88%(圖3a)。值得注意的是,隨著W含量的增加,充放電曲線變得更平滑。具體來說,高壓高原在≈4.18V變得不那么明顯,與相應(yīng)的氧化還原峰值的強度急劇下降差異容量(dQ/dV)曲線,表明抑制氧化還原活性和相關(guān)的H2→H3相變可能歸因于W摻雜(圖3b)。此外,還對其速率能力進行了研究。如圖3c顯示幾乎相同的速率性能,而S2的速率能力變得更糟,表明高濃度W摻雜會降低速率性能。

因此,該工作選擇s0和s1來研究在1C的電流速率下進行長時間循環(huán)后的容量保留情況(圖3d)。S1的容量為197.3mAhg?1,100次循環(huán)后的高容量保留率為98.8%,表明有顯著的容量保留率。即使經(jīng)過300次循環(huán),S1仍然提供了182.4mAhg?1的容量,容量保留率為91.6%,與S0形成鮮明對比,后者僅顯示142mAhg?1,容量保留率為72.7%。在最初的幾個周期中,S1的容量明顯增加,表明存在一個激活過程。這可以歸因于s1正極,當(dāng)獲得最大容量時,電解液進入s1的激活比s0需要更多的時間才能達到平衡。而且,S1的庫侖效率相對穩(wěn)定,在循環(huán)過程中接近100%。在電壓衰減方面,S0明顯經(jīng)歷了平均放電電壓的明顯衰減,與S1形成了更穩(wěn)定的電壓曲線(圖3e)。定量地說,在300個循環(huán)中,S1的電壓衰減率比S0的0.26 mV循環(huán)?1要低得多??偟膩碚f,電化學(xué)分析表明S1具有優(yōu)越的循環(huán)穩(wěn)定性,這表明W摻雜策略在改善高鎳正極材料方面具有重要意義,這可能歸因于摻雜W抑制結(jié)構(gòu)降解。

d7849736-fa05-11ed-90ce-dac502259ad0.png

圖3.高鎳正極材料的電化學(xué)性能。a)在0.1時,在2.7-4.3V之間的第一次循環(huán)充放電曲線 C. b)第一個周期中S0和S1對應(yīng)的dQ/dV曲線。c)S0和S1的速率性能。插圖顯示了第一個周期放電期間的Li+擴散系數(shù)。d)S0和S1在1C下在2.7和4.3 V之間的循環(huán)性能。e)不同循環(huán)下s0和s1在1C下的充放電曲線。

考慮到W摻雜對電化學(xué)性能增強的顯著影響,該工作采用了詳細的電子衍射(ED)研究來了解W對晶體結(jié)構(gòu)的影響,如圖4所示。圖4a顯示了一個典型的s0粒子的透射電鏡圖像,其中選擇了一個沿[100]晶體學(xué)方向的黃色區(qū)域來進行ED研究。如圖4b所示,得到了一個典型的R3m層狀結(jié)構(gòu)的實驗ED圖,沒有額外的衍射斑點,與基于純層狀結(jié)構(gòu)的模擬ED圖吻合良好(圖4c)。相比之下,S1的ED模式從黃色區(qū)域如圖4d和紅色區(qū)域如圖S23包含一組新的周期性排列的點,沿著紅色箭頭在圖4e,表明一個可能存在新的階段。通過比較基于層狀(圖4c)和尖晶石(圖4f)結(jié)構(gòu)的模擬圖案,可以清楚地看到,層狀結(jié)構(gòu)的(012)平面與尖晶石結(jié)構(gòu)的(222)平面具有相同的平面間距。此外,層狀結(jié)構(gòu)中(003)和(012)平面之間的交角與尖晶石結(jié)構(gòu)中(111)和(222)平面之間的交角幾乎相同。除了沿圖4f中綠色箭頭顯示的模擬ED模式外,其余模式可以與圖4c中的模擬模式很好地重疊。自S1的實驗ED模式幾乎相同的重疊模擬模式可以得出結(jié)論,新的衍射點的紅色箭頭圖4e起源于W摻雜S1引起尖晶石結(jié)構(gòu)。

d78dc70c-fa05-11ed-90ce-dac502259ad0.png

圖4。未摻雜和摻雜NCM94正極材料ED譜的比較。a,d)S0(a)和S1 (d).的典型顆粒的透射電鏡圖像b,e)分別從(a、d)中選擇的黃色區(qū)域沿[100]區(qū)軸方向觀察的S0 (b)和S1 (e)的ED模式。(e)中的紅色行表示尖晶石結(jié)構(gòu)沿[100]晶體方向的特征ED圖案。c,f)從沿[100]晶體方向(c)的層狀結(jié)構(gòu)和沿[110]晶體方向的尖晶石結(jié)構(gòu)模擬ED圖案(f)。(f)中的綠色行表示尖晶石結(jié)構(gòu)中模擬的特征ED圖案,不能與層狀結(jié)構(gòu)中模擬的特征ED圖案重疊。

此外,利用高角度環(huán)形暗場/環(huán)形亮場掃描透射電鏡(HAADF/ ABF-STEM)進一步研究了正極材料的原子結(jié)構(gòu)。在S0中,在TM層中可以清晰地觀察到代表TMs的連續(xù)亮點模式(圖5a),類似于S1的層狀區(qū)域的模式(圖5b,c)。平面間距離為4.7 A,對應(yīng)于層狀結(jié)構(gòu)的(003)平面。同時,還記錄了ABF-STEM圖像,其中不僅TM/O,Li原子也可以可視化為暗點。與S0相比,在圖5c的S1的HAADF-STEM圖像中可以清楚地觀察到三種類型的原子排列,包括TM層的連續(xù)亮點圖案(層狀結(jié)構(gòu)),TM層的周期性亮暗交替點圖案(尖晶石結(jié)構(gòu)),以及Li層的連續(xù)亮點圖案(巖鹽結(jié)構(gòu))。在TM層中具有周期性暗對比的TM原子排列被認(rèn)為是TM-TM/Li-TM排列,這意味著一些TM原子位點被Li原子所取代。同時,在Li層中也可以觀察到亮點,導(dǎo)致出現(xiàn)周期性的亮-暗-亮點圖案,這與Li/TM反位點缺陷有關(guān)。這種結(jié)構(gòu)可以被分配到尖晶石晶體域。Li層中連續(xù)的亮點圖案與TM原子對所有Li原子位置的占據(jù)有關(guān),對應(yīng)于陽離子無序的巖鹽結(jié)構(gòu)。隨機分布的疇結(jié)構(gòu)在TM層和Li層中呈現(xiàn)出周期性的有序原子排列,位于具有尖晶石結(jié)構(gòu)的兩層相之間,如圖5c所示。圖S27(支持信息)中記錄的ABF-STEM圖像進一步闡明了S1的特征原子結(jié)構(gòu),因為它有可區(qū)分的鋰原子。所有這些原子分辨率的研究表明,典型的層狀、巖鹽和尖晶石結(jié)構(gòu)共存,出現(xiàn)為納米大小的晶體域。

為了進一步識別納米尺寸域的結(jié)構(gòu),該工作在選定的區(qū)域進行了快速傅里葉變換(FFT)。來自橙色標(biāo)記區(qū)域的FFT圖像如圖5c的插圖所示。可以識別出兩組斑點,類似于重疊的ED模擬模式,包括圖S24中所示的層狀和尖晶石結(jié)構(gòu)(支持信息)。很明顯,一組斑點反映了層狀結(jié)構(gòu),而另一組斑點(用紅色箭頭標(biāo)記)反映了尖晶石結(jié)構(gòu)域,這與圖4e,f中的ED結(jié)果很一致。從而進一步證實了層狀結(jié)構(gòu)與尖晶石結(jié)構(gòu)的共存。

圖5c中部分放大圖如圖5d、e所示。由紅色和綠色框架標(biāo)記的選定區(qū)域的FFT模式分別被標(biāo)記為尖晶石和巖鹽結(jié)構(gòu)(插圖見圖5d,e)。所有的原子尺度圖像均與ED分析結(jié)果一致。圖5c中的譜線1-2、3-4和5-6的高度輪廓進一步證實了S1的TM層和Li層中不同的特征周期原子排列,分別如圖5f-h所示。S1的更多STEM結(jié)果如圖S28和S29(支持信息)所示,證實了復(fù)合納米尺寸的晶體域是S1初級粒子的固有特征。

d7987be8-fa05-11ed-90ce-dac502259ad0.png

圖5。無摻雜和摻雜NCM94正極材料的納米結(jié)構(gòu)比較。a,b)S0(a)和S1 (b).的原子分辨率HAADF-STEM圖像c) HAADF-STEM圖像顯示了S1中晶體域的原子結(jié)構(gòu)。插圖是從(c).中選擇的橙色區(qū)域得到的FFT模式d,e)從(c).中標(biāo)記的區(qū)域A和B中放大的HAADF-STEM圖像插圖分別是從(d)和(e)中選擇的紅色和綠色區(qū)域?qū)?yīng)的FFT圖案,顯示了尖晶石(Fd_3m空間群)和巖鹽(Fm_3m空間群)結(jié)構(gòu)。f-h)(c)中第1-2、3-4和5-6行的強度曲線

因此,比較S0和S1的原子結(jié)構(gòu),表明摻雜W可以促進納米疇的形成。W在體結(jié)構(gòu)中摻雜W導(dǎo)致NCM-94晶體表面能的發(fā)生改變,導(dǎo)致晶體沿首選(001)方向生長。同時,W摻雜抑制了初級粒子的粗化,從而細化了初級粒子的尺寸。因此,晶體在高溫煅燒過程中相互合并形成單晶,導(dǎo)致層狀結(jié)構(gòu)的交叉,從而產(chǎn)生尖晶石結(jié)構(gòu)的疇邊界。在尖晶石結(jié)構(gòu)中,鎳離子在鋰層有序排列作為柱結(jié)構(gòu),這可以抑制TM離子從TM層到鋰層的遷移,緩解有序?qū)訝罱Y(jié)構(gòu)的無序尖晶石/巖鹽相的轉(zhuǎn)換,并保持晶體結(jié)構(gòu)的完整性。因此,預(yù)先引入的納米尺寸的尖晶石疇可以抑制放電/電荷過程中的結(jié)構(gòu)躍遷,提高S1的電化學(xué)穩(wěn)定性。

為了量化摻雜W對充放電過程中s0和s1結(jié)構(gòu)演化的影響,該工作檢測了晶格參數(shù)和單元體積的變化,如圖6d、e所示。最初,由于Li+的提取,晶格參數(shù)a單調(diào)地減小,而c在4.02 V以下逐漸增加,這主要是由于氧板之間的靜電斥力。在進一步解振后,晶格參數(shù)c在H2→H3相變的起始電壓時突然降低,直到4.5 V。值得注意的是,S1的晶格參數(shù)c的最大變化范圍遠小于S0。結(jié)果表明,與S0相比,S1的最大細胞體積變化降低了15.7%(圖6e),表明W摻雜增強了結(jié)構(gòu)穩(wěn)定性。

d7a64f34-fa05-11ed-90ce-dac502259ad0.png

圖6。b)對第一個循環(huán)中S0 (a)和S1 (b)的(003)峰的原位XRD分析。c)S0和S1在2.7~4.5v.d之間的dQ/dV曲線,e)通過原位XRD顯示的第一個周期中S0和S1的晶胞參數(shù)和體積的演變。

為了研究表面TM電子結(jié)構(gòu)的演化,在第一個循環(huán)中,在不同狀態(tài)下進行了TEY模式下的非原位sXAS實驗。圖7a-d顯示了歸一化的Nil3邊,以及在兩個指定點之間的差分強度。如s0的nil3邊所示和S1,在充電至4.2 V時,852.8 eV的A1峰強度降低,而854.5 eV的A2峰強度增加,說明Li+提取后Ni被氧化。而在4.2V~4.5V的充電過程中,s0的a2峰強度降低,而s1的a2峰強度增加。此外,Ni L3-edge的差分強度曲線表明,在S04.2-4.5V深電荷時,氧化Ni3+/4+離子部分還原為Ni2+離子,表明未摻雜表面的化學(xué)不穩(wěn)定性(圖7b),而S1中差分曲線的強度進一步增加反映了進一步充電至4.5 V后連續(xù)氧化。圖7e中A2/A1比的演變進一步闡明了S0和S1Ni氧化態(tài)在4.2-4.5V之間的相反趨勢。這些結(jié)果表明,高價W摻雜后的S1的表面具有較少的化學(xué)不穩(wěn)定的Ni4+離子,這降低了深電荷時Ni還原的可能性。同時,這一現(xiàn)象也表明它可能抑制氧損失和電解質(zhì)分解,從而提高結(jié)構(gòu)的穩(wěn)定性。

d7aef512-fa05-11ed-90ce-dac502259ad0.png

圖7。在不同充放電狀態(tài)下,TEY模式下收集的S0 (a)和S1 (c)的Nil3邊sXAS譜,以及S0 (b)和S1 (d)在兩個指定點之間的微分譜。e)S0和S1在指定點上的A2/A1比值。

總結(jié)與展望

通過采用高價W摻雜策略來調(diào)整微觀結(jié)構(gòu),包括納米晶體域的原子級結(jié)構(gòu)和無鈷正極材料初級粒子的微觀結(jié)構(gòu),以穩(wěn)定結(jié)構(gòu)和優(yōu)化電化學(xué)性能。最佳的W摻雜正極材料由沿徑向延伸的棒狀初級粒子組成,其中預(yù)先引入了尖晶石疇結(jié)構(gòu)。這種正極材料可以提供顯著提高電化學(xué)性能,1C循環(huán)300后的容量保留為91.6%結(jié)果表明,摻雜W可以阻礙深電荷態(tài)下有害的h2→h3相變,減輕嚴(yán)重的晶格收縮和相關(guān)的微裂紋,抑制Ni4+化學(xué)不穩(wěn)定的產(chǎn)生。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 圖像
    +關(guān)注

    關(guān)注

    2

    文章

    1078

    瀏覽量

    40348
  • 正極材料
    +關(guān)注

    關(guān)注

    4

    文章

    308

    瀏覽量

    18463
  • 光譜
    +關(guān)注

    關(guān)注

    4

    文章

    759

    瀏覽量

    34998
收藏 人收藏

    評論

    相關(guān)推薦

    采用初級側(cè)調(diào)節(jié)的4.2W GU10 LED照明驅(qū)動器

    電子發(fā)燒友網(wǎng)站提供《采用初級側(cè)調(diào)節(jié)的4.2W GU10 LED照明驅(qū)動器.pdf》資料免費下載
    發(fā)表于 10-10 11:01 ?0次下載
    采用<b class='flag-5'>初級</b>側(cè)<b class='flag-5'>調(diào)節(jié)</b>的4.2<b class='flag-5'>W</b> GU10 LED照明驅(qū)動器

    摻雜對PN結(jié)伏安特性的影響

    摻雜對PN結(jié)伏安特性的影響是半導(dǎo)體物理學(xué)中的一個重要議題。PN結(jié)作為半導(dǎo)體器件的基礎(chǔ)結(jié)構(gòu),其性能在很大程度上取決于摻雜濃度、摻雜類型以及摻雜
    的頭像 發(fā)表于 07-25 14:27 ?1180次閱讀

    PMP30921.1-4W 不連續(xù)導(dǎo)通模式初級側(cè)調(diào)節(jié)反激式 PCB layout 設(shè)計

    電子發(fā)燒友網(wǎng)站提供《PMP30921.1-4W 不連續(xù)導(dǎo)通模式初級側(cè)調(diào)節(jié)反激式 PCB layout 設(shè)計.pdf》資料免費下載
    發(fā)表于 05-22 15:16 ?0次下載
    PMP30921.1-4<b class='flag-5'>W</b> 不連續(xù)導(dǎo)通模式<b class='flag-5'>初級</b>側(cè)<b class='flag-5'>調(diào)節(jié)</b>反激式 PCB layout 設(shè)計

    PMP30951.1-隔離式 10W 初級側(cè)調(diào)節(jié) (PSR) DCM 反激式 PCB layout 設(shè)計

    電子發(fā)燒友網(wǎng)站提供《PMP30951.1-隔離式 10W 初級側(cè)調(diào)節(jié) (PSR) DCM 反激式 PCB layout 設(shè)計.pdf》資料免費下載
    發(fā)表于 05-21 16:05 ?0次下載
    PMP30951.1-隔離式 10<b class='flag-5'>W</b> <b class='flag-5'>初級</b>側(cè)<b class='flag-5'>調(diào)節(jié)</b> (PSR) DCM 反激式 PCB layout 設(shè)計

    PMP23440.1-90VAC 至 132VAC輸入5W初級側(cè)調(diào)節(jié)反激式PCB layout設(shè)計

    電子發(fā)燒友網(wǎng)站提供《PMP23440.1-90VAC 至 132VAC輸入5W初級側(cè)調(diào)節(jié)反激式PCB layout設(shè)計.pdf》資料免費下載
    發(fā)表于 05-09 15:23 ?0次下載
    PMP23440.1-90VAC 至 132VAC輸入5<b class='flag-5'>W</b><b class='flag-5'>初級</b>側(cè)<b class='flag-5'>調(diào)節(jié)</b>反激式PCB layout設(shè)計

    HarmonyOS開發(fā)案例:【app內(nèi)字體大小調(diào)節(jié)

    使用基礎(chǔ)組件[Slider],通過拖動滑塊調(diào)節(jié)應(yīng)用內(nèi)字體大小。
    的頭像 發(fā)表于 04-19 15:36 ?567次閱讀
    HarmonyOS開發(fā)案例:【app<b class='flag-5'>內(nèi)</b>字體大小<b class='flag-5'>調(diào)節(jié)</b>】

    更快、更高效的納米粒子成像系統(tǒng)

    研究人員開發(fā)了一種新的納米粒子成像系統(tǒng)。該系統(tǒng)由一種高精度、短波紅外成像技術(shù)組成,能夠捕捉微毫秒范圍內(nèi)稀土摻雜納米粒子的光致發(fā)光壽命。 這一發(fā)現(xiàn)以“使用全光學(xué)條紋成像的稀土
    的頭像 發(fā)表于 03-04 06:38 ?318次閱讀

    5.5W功率電壓調(diào)節(jié)器二極管HPZR-Q系列數(shù)據(jù)手冊

    電子發(fā)燒友網(wǎng)站提供《5.5W功率電壓調(diào)節(jié)器二極管HPZR-Q系列數(shù)據(jù)手冊.pdf》資料免費下載
    發(fā)表于 01-23 10:32 ?0次下載
    5.5<b class='flag-5'>W</b><b class='flag-5'>高</b>功率電壓<b class='flag-5'>調(diào)節(jié)</b>器二極管HPZR-Q系列數(shù)據(jù)手冊

    4.1 W功率電壓調(diào)節(jié)器二極管HPZR系列數(shù)據(jù)手冊

    電子發(fā)燒友網(wǎng)站提供《4.1 W功率電壓調(diào)節(jié)器二極管HPZR系列數(shù)據(jù)手冊.pdf》資料免費下載
    發(fā)表于 01-23 10:31 ?0次下載
    4.1 <b class='flag-5'>W</b><b class='flag-5'>高</b>功率電壓<b class='flag-5'>調(diào)節(jié)</b>器二極管HPZR系列數(shù)據(jù)手冊

    納米管晶體管兼容已有半導(dǎo)體制程工藝,解決碳納米管均勻可控摻雜難題

    研究中,他們提出了一種頂柵互補碳納米管金屬-氧化物-半導(dǎo)體場效應(yīng)晶體管結(jié)構(gòu)(Top Gate complementary CNT MOSFETs)。在該結(jié)構(gòu)中,通過將摻雜僅僅局限在延伸
    的頭像 發(fā)表于 01-05 16:08 ?788次閱讀
    碳<b class='flag-5'>納米</b>管晶體管兼容已有半導(dǎo)體制程工藝,解決碳<b class='flag-5'>納米</b>管均勻可控<b class='flag-5'>摻雜</b>難題

    子母式微納米機器人系統(tǒng),用于顱內(nèi)跨尺度靶向給藥

    團隊分別在體外膠質(zhì)瘤細胞微環(huán)境和離體豬腦組織內(nèi)開展了試驗。結(jié)果表明,微納米機器人可遠距離遞送到指定病灶,釋放藥物殺死膠質(zhì)瘤細胞。這驗證了該研究所提出的子母式微納米機器人跨尺度遞送方法
    的頭像 發(fā)表于 12-26 16:40 ?352次閱讀
    子母式微<b class='flag-5'>納米</b>機器人系統(tǒng),用于顱<b class='flag-5'>內(nèi)</b>跨尺度靶向給藥

    光纖激光器的原理是實現(xiàn)粒子數(shù)反轉(zhuǎn)嗎

    應(yīng)用。 一、光纖激光器的原理 光纖激光器是一種利用光纖作為諧振腔的激光器。其工作原理是基于粒子數(shù)反轉(zhuǎn)來實現(xiàn)激光發(fā)射的。在光纖激光器中,通常使用摻雜光纖作為增益介質(zhì),摻雜光纖中的摻雜離子
    的頭像 發(fā)表于 12-19 13:44 ?891次閱讀

    光學(xué)納米粒子的光學(xué)捕獲及其應(yīng)用介紹

    《光電科學(xué)》發(fā)表的一篇新文章回顧了光學(xué)捕獲的光學(xué)納米粒子的基本原理和應(yīng)用。光學(xué)納米粒子是光子學(xué)的關(guān)鍵要素之一。
    的頭像 發(fā)表于 11-25 14:25 ?938次閱讀
    光學(xué)<b class='flag-5'>納米粒子</b>的光學(xué)捕獲及其應(yīng)用介紹

    超細納米粒子干法打印用于金屬氧化物氣體傳感器

    雖然目前的 SMO 傳感器能夠檢測多種氣體,但區(qū)分各個分子的靈敏性很差。下一代氣體傳感器的應(yīng)用將需要應(yīng)對廣泛的篩選的需求,這需要我們對初級顆粒尺寸和摻雜元素的影響進行深入研究。
    的頭像 發(fā)表于 11-20 16:35 ?627次閱讀
    超細<b class='flag-5'>納米粒子</b>干法打印用于金屬氧化物氣體傳感器

    一個微型的粒子加速器

    粒子加速器是一種利用電場和磁場加速帶電粒子,如電子、質(zhì)子或離子,使其達到非常的能量的裝置。它們在科學(xué)、醫(yī)學(xué)和工業(yè)等領(lǐng)域有許多應(yīng)用,如研究物質(zhì)的結(jié)
    的頭像 發(fā)表于 10-31 09:31 ?716次閱讀