0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

協(xié)同電解質(zhì)添加劑對(duì)快速充放電石墨負(fù)極的鋰電鍍調(diào)控研究

清新電源 ? 來源:深水科技咨詢 ? 2023-07-03 09:35 ? 次閱讀

引言

石墨陽極易于在快速充電過程中發(fā)生危險(xiǎn)的鋰沉積,但很難確定限制速率的步驟,因此很難徹底消除鋰沉積。因此,需要改變對(duì)抑制鋰沉積的固有思維。

正文部分

01 成果簡介

本文通過在商業(yè)碳酸酯電解液中引入三聚甘醚(G3)-硝酸鋰協(xié)同添加劑(GLN),在石墨陽極上構(gòu)建了均勻鋰離子通量的彈性固體電解質(zhì)界面(SEI),以實(shí)現(xiàn)無枝晶狀結(jié)構(gòu)的、高度可逆的高速鋰沉積。來自GLN的交聯(lián)寡聚醚和Li3N顆粒極大地提高了鋰沉積前后SEI的穩(wěn)定性,并促進(jìn)了均勻的鋰沉積。當(dāng)鋰沉積貢獻(xiàn)了51%的儲(chǔ)鋰容量時(shí),含有5vol%GLN的電解液中的石墨陽極在100個(gè)循環(huán)中實(shí)現(xiàn)了平均99.6%的鋰沉積可逆性。此外,帶有GLN添加電解液的1.2安時(shí)LiFePO4| 石墨軟包電池在3C倍率下穩(wěn)定運(yùn)行了150個(gè)循環(huán),展示了GLN在商業(yè)鋰離子電池中用于快速充電應(yīng)用的潛力。

02 圖文導(dǎo)讀

80298f32-192c-11ee-962d-dac502259ad0.png

【圖1】(A)危險(xiǎn)的鋰在石墨陽極上形成的鍍層,其中鍍層鋰呈枝晶狀,分布不均勻,并且不可逆。(B)調(diào)控的鋰在石墨陽極上形成的鍍層,其中鍍層鋰無枝晶狀,分布均勻,并且可逆。

可逆的鋰鍍層對(duì)于高性能快速充電鋰離子電池的發(fā)展至關(guān)重要。眾所周知,在固液相交界處的鋰離子擴(kuò)散和鋰成核的化學(xué)環(huán)境是影響陽極鋰鍍層行為的關(guān)鍵因素。因此,通過設(shè)計(jì)溶劑結(jié)構(gòu)和構(gòu)建功能性固體電解質(zhì)界面膜來調(diào)控鋰鍍層可以被視為一種有效的電解液工程方法,同時(shí)確保石墨鋰化正常進(jìn)行。

8063b32e-192c-11ee-962d-dac502259ad0.png

【圖2】(A)EC/ DMC / FEC電解質(zhì)中LiNO3的溶解度以及(B)G3溶劑中LiNO3的溶解度。EC / DMC /FEC電解質(zhì)中的溶液狀態(tài)以及(C)5.0體積百分比的GLN濃縮物和(D)>5.0體積百分比的GLN濃縮物的濃度。(E)EC/ DMC,(F)EC/ DMC + GLN和(G)EC/ DMC / FEC + GLN的典型溶劑化結(jié)構(gòu)以及相應(yīng)的鋰離子脫溶能量。(H)純G3,EC/ DMC,EC/ DMC / FEC,EC/ DMC + GLN和EC/ DMC / FEC + GLN的拉曼光譜。(I)使用EC/ DMC + GLN電解質(zhì)的半電池在0.2和2C時(shí)的容量-電壓曲線。

由于高熱力學(xué)穩(wěn)定性和良好的鋰離子導(dǎo)電性,Li3N被認(rèn)為是高性能鋰金屬陽極自形成SEI的關(guān)鍵組分。亞硝酸鋰(LiNO3)通常被用作獲得Li3N的有效前體。不幸的是,LiNO3在碳酸酯型電解質(zhì)(1M LiPF6在乙碳酸酯(EC)/二甲基碳酸酯(DMC)(體積比1:1)中,含有5%FEC)中的溶解度非常低(<10?5g mL?1)。然而,在G3中,LiNO3的溶解度較高。因此,制備了一種4M G3-LiNO3濃縮溶液。如照片所示,在添加了5vol%的4MG3-LiNO3添加劑(GLN)后,電解質(zhì)變得透明。如果繼續(xù)增加劑量,電解質(zhì)中會(huì)出現(xiàn)白色沉淀物。值得注意的是,G3和Li離子之間強(qiáng)烈的結(jié)合阻礙了Li脫溶和電荷交換過程。因此,F(xiàn)EC可以通過偶極-偶極相互作用削弱G3和Li離子之間的結(jié)合。因此,基于上述分析,在含有5vol%FEC的原始電解質(zhì)中添加5vol%G3-LiNO3添加劑,用于調(diào)節(jié)快速充電石墨負(fù)極上的鋰沉積。

809ee7aa-192c-11ee-962d-dac502259ad0.png

【圖3】(A)使用空白電解質(zhì)和(B)添加GLN的電解質(zhì)的電池容量-電壓曲線是通過在1C,2C和3C下進(jìn)行的CLC測(cè)試獲得的。(C)使用空白電解質(zhì)和添加GLN的電解質(zhì)的Gr|Li半電池的CE在1C,2C和3C下進(jìn)行測(cè)試。平均CE在1C,2C和3C下分別基于150,100和50個(gè)循環(huán)進(jìn)行計(jì)算。(D)在Li電鍍前,(E)在Li電鍍后,以及(F)在空白電解質(zhì)和添加GLN的電解質(zhì)中進(jìn)行Li釋放之后的鋰陽極的Li-TOF-SIMS映射。

在1C的前50個(gè)循環(huán)中,空白和GLN添加的電解液都表現(xiàn)出微不足道的鋰鍍層(圖3A和3B)。在更高的2和3C下,空白電解液表現(xiàn)出明顯更高的鋰鍍層容量,分別占總鍍鋰容量的72%和91%。而GLN電池,2和3C下的鍍鋰容量比例分別為51%和87%。面對(duì)如此大量的鋰鍍層,GLN電池實(shí)現(xiàn)了99.6%(2C)和98.58%(3C)的鋰鍍層可逆性,高于空白電池(圖3C)。隨著時(shí)間的推移,空白電解液中石墨負(fù)極的可逆性和穩(wěn)定性顯著惡化,而GLN添加電解液中的石墨負(fù)極狀態(tài)良好,這表明前者遭受了來自鋰鍍層的不可逆損傷。利用飛行時(shí)間二次離子質(zhì)譜(TOF-SIMS)探測(cè)石墨負(fù)極上的鋰分布。在GLN添加電解液中進(jìn)行鋰鍍層后,鋰顯示均勻分布,而在空白電解液中工作的鋰鍍層陽極表現(xiàn)出局部區(qū)域的鋰富集(圖3D和3E)。不均勻的鋰沉積將促進(jìn)鋰枝晶的生長。GLN基陽極中的鋰信號(hào)在完全脫鋰后顯示出均勻和弱的特征,證明了鋰鍍層的高可逆性。相反,高鋰強(qiáng)度和鋰與碳之間強(qiáng)烈的強(qiáng)度差異表明在空白電解液基底陽極上存在大量不活性鋰。由于重復(fù)的鋰鍍層過程中發(fā)生枝晶生長和不活性鋰積累,內(nèi)部電阻將增大,導(dǎo)致電池性能的深度衰減。

80db1022-192c-11ee-962d-dac502259ad0.png

【圖4】在添加GLN的電解液中,在10~30nm深度形成的SEI的高分辨率(A)O 1s和(B)F 1s XPS光譜。GLN添加電解液中石墨陽極的透射電子顯微鏡圖像:(C)在Li鍍前,(D)在Li鍍后,(E)在2C釋放鋰后。從反應(yīng)前后在空白和GLN添加電解液中石墨陽極的(F)電荷傳遞阻抗(Rct)和(G)法拉第響應(yīng)(Rf)中得出的激活能。

在鋰沉積后,空白電解質(zhì)中的Li2O信號(hào)增加,反映了SEI(固體電解質(zhì)界面)的破壞。這是因?yàn)楸┞兜闹箍瞻纂娊赓|(zhì)中主要溶劑的分解加劇。另一方面,鋰沉積后LiF信號(hào)的下降可能是由于不規(guī)則的鋰金屬破壞了SEI,導(dǎo)致了副反應(yīng)。至于添加了GLN的電解質(zhì),鋰沉積前后每個(gè)元素的微小變化表明穩(wěn)定的SEI。透射電子顯微鏡(TEM)圖像也支持GLN來源的SEI更薄且更均勻,約為20nm厚,并且在鋰沉積后仍保持其形態(tài)。然而,在空白電解質(zhì)中,鋰沉積后的SEI經(jīng)歷了嚴(yán)重的結(jié)構(gòu)波動(dòng),這是由于隨機(jī)枝晶生長所致。

8131d966-192c-11ee-962d-dac502259ad0.png

【圖5】(A)參考電極在三電極裝置中的示意圖,捕捉陰極和陽極的精確電位。(B)使用未加入GLN的電解液和加入GLN的電解液的軟包電池的循環(huán)性能以及(C)對(duì)應(yīng)的容量保持率。(D)使用加入GLN的電解液的軟包電池的實(shí)際應(yīng)用。(E)使用未加入GLN的電解液和加入GLN的電解液的軟包電池在3C條件下的循環(huán)性能以及(F)循環(huán)后的電極照片。

作者使用LiFePO4正極和石墨負(fù)極(LFP|Gr),在空白電解液和添加GLN的電解液中評(píng)估了全電池。負(fù)極和正極的N/P比為0.8。使用Li金屬作為參考電極進(jìn)行了三電極電池實(shí)驗(yàn),以研究全電池中的Li鍍層。在0.2、1和2C下,使用添加GLN的電解液的全電池的Li鍍層容量分別為0、0.2和0.33mAh cm-2,而使用空白電解液的電池的Li鍍層容量分別為0.34、0.83和0.72mAh cm-2。如預(yù)期的那樣,含有添加GLN的電解液的全電池可以在1C下保持可逆容量2.1mAhcm-2,并且在500個(gè)循環(huán)后保持82%的容量保留率,這是由于Li3N彈性SEI引起的可逆Li鍍層和較低的界面電阻。即使在高倍率(2和3C)下,GLN電池仍然表現(xiàn)出優(yōu)于空白電池的長期循環(huán)穩(wěn)定性。

在2C下經(jīng)過200個(gè)循環(huán)后,在使用空白電解液的電池上觀察到了大量的死鋰在石墨界面上堆積的現(xiàn)象,而使用添加GLN的電解液的循環(huán)過的石墨界面更加清潔。為了評(píng)估GLN在商業(yè)鋰離子電池的快速充電操作中的適用性,作者制備了一個(gè)1.2Ah的LFP| Gr軟包電池,并進(jìn)行了倍率和循環(huán)測(cè)試。作者采用恒流/恒壓(CCCV)模式進(jìn)行充電步驟,截止率為0.05C(1C = 1.2 Ah)。從圖5E可以看出,在3C下使用添加GLN的電解液的電池在150個(gè)循環(huán)內(nèi)沒有明顯的容量衰減,表明具有高度可逆的Li鍍層。在相同的循環(huán)條件下,基于空白電解液的電池的容量保留率僅為78.1%。倍率性能進(jìn)一步證明了添加GLN的電解液在容量輸出和保留方面的絕對(duì)優(yōu)勢(shì)。在3C下經(jīng)過150個(gè)循環(huán)后(去鋰狀態(tài)),對(duì)負(fù)極形貌的分析進(jìn)一步說明了可逆的負(fù)極Li鍍層是實(shí)現(xiàn)快速充電鋰離子電池具有優(yōu)異的容量保留率、更高的循環(huán)穩(wěn)定性和令人滿意的安全性的關(guān)鍵開關(guān)(圖5F)。

總結(jié)和展望

綜上所述,通過在常規(guī)碳酸酯電解質(zhì)中使用簡易G3-LiNO3添加劑,快速充電條件下的石墨負(fù)極上獲得了高度可逆的鋰沉積行為。除了促進(jìn)LiNO3的溶解外,G3還可以優(yōu)先在負(fù)極表面聚合形成柔性和彈性的寡聚醚涂層,該涂層可以作為黏合劑將SEI中的無機(jī)成分緊密交聯(lián)并結(jié)合在一起。因此,由GLN的協(xié)同效應(yīng)引發(fā)的SEI具有改進(jìn)的力學(xué)性能,可以抵抗鋰沉積引起的應(yīng)力波動(dòng)。同時(shí),該SEI中密集分布的Li3N加速了反應(yīng)層上的Li離子擴(kuò)散,促進(jìn)Li的成核遵循2D模式。因此,在快速充電條件下,可以在石墨負(fù)極上實(shí)現(xiàn)均勻、無枝晶并具有高度可逆的鋰沉積。當(dāng)鋰沉積占石墨負(fù)極總鋰化容量的51%(2C)時(shí),通過添加GLN,100個(gè)循環(huán)內(nèi)的平均鋰沉積可逆性從89.43%提高到99.6%。此外,1.2-Ah軟包電池的穩(wěn)定3C和6C循環(huán)性能證明了GLN在商業(yè)快速充電鋰離子電池中的潛力。這項(xiàng)工作打破了對(duì)鋰沉積抑制的固有看法,并為快速充電電池設(shè)計(jì)提供了一種替代性但有效的解決方案。





審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 鋰離子電池
    +關(guān)注

    關(guān)注

    85

    文章

    3191

    瀏覽量

    77410
  • 充電電池
    +關(guān)注

    關(guān)注

    1

    文章

    170

    瀏覽量

    25105
  • 電解質(zhì)
    +關(guān)注

    關(guān)注

    6

    文章

    791

    瀏覽量

    19975
  • 電解液
    +關(guān)注

    關(guān)注

    10

    文章

    834

    瀏覽量

    23019

原文標(biāo)題:上海交大Angew:協(xié)同電解質(zhì)添加劑對(duì)快速充放電石墨負(fù)極的鋰電鍍調(diào)控研究

文章出處:【微信號(hào):清新電源,微信公眾號(hào):清新電源】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    無極電容器有電解質(zhì)嗎,無極電容器電解質(zhì)怎么測(cè)

    無極電容器通常存在電解質(zhì)。電解質(zhì)在無極電容器中起著重要作用,它可以增加電容器的電容量和穩(wěn)定性。然而,電解質(zhì)也可能帶來一些問題,如漏電和壽命問題。
    的頭像 發(fā)表于 10-01 16:45 ?202次閱讀

    鈮酸鋰調(diào)控固態(tài)電解質(zhì)電場結(jié)構(gòu)促進(jìn)鋰離子高效傳輸!

    聚合物基固態(tài)電解質(zhì)得益于其易加工性,最有希望應(yīng)用于下一代固態(tài)鋰金屬電池。
    的頭像 發(fā)表于 05-09 10:37 ?471次閱讀
    鈮酸鋰<b class='flag-5'>調(diào)控</b>固態(tài)<b class='flag-5'>電解質(zhì)</b>電場結(jié)構(gòu)促進(jìn)鋰離子高效傳輸!

    什么是鋰電池電芯,什么是電池模組,什么是電池包?

    鋰電池電芯是構(gòu)成電池系統(tǒng)的基本單元,它是一個(gè)封裝在金屬殼體或塑料外殼中的電化學(xué)裝置,負(fù)責(zé)儲(chǔ)存和釋放電能。電芯通常由正極、負(fù)極、隔膜和電解質(zhì)組成。
    的頭像 發(fā)表于 04-12 17:07 ?1099次閱讀

    請(qǐng)問聚合物電解質(zhì)是如何進(jìn)行離子傳導(dǎo)的呢?

    在目前的聚合物電解質(zhì)體系中,高分子聚合物在室溫下都有明顯的結(jié)晶性,這也是室溫下固態(tài)聚合物電解質(zhì)的電導(dǎo)率遠(yuǎn)遠(yuǎn)低于液態(tài)電解質(zhì)的原因。
    的頭像 發(fā)表于 03-15 14:11 ?916次閱讀
    請(qǐng)問聚合物<b class='flag-5'>電解質(zhì)</b>是如何進(jìn)行離子傳導(dǎo)的呢?

    不同類型的電池的電解質(zhì)都是什么?

    電解質(zhì)通過促進(jìn)離子在充電時(shí)從陰極到陽極的移動(dòng)以及在放電時(shí)反向的移動(dòng),充當(dāng)使電池導(dǎo)電的催化。離子是失去或獲得電子的帶電原子,電池的電解質(zhì)由液體,膠凝和干燥形式的可溶性鹽,酸或其他堿組成
    的頭像 發(fā)表于 02-27 17:42 ?1204次閱讀

    新型固體電解質(zhì)材料可提高電池安全性和能量容量

    利物浦大學(xué)的研究人員公布了一種新型固體電解質(zhì)材料,這種材料能夠以與液體電解質(zhì)相同的速度傳導(dǎo)鋰離子,這是一項(xiàng)可能重塑電池技術(shù)格局的重大突破。
    的頭像 發(fā)表于 02-19 16:16 ?784次閱讀

    充放電不一致影響超級(jí)電容器性能的原因及解決方案

    等方面。本文將詳細(xì)探討充放電不一致的原因,并提出相應(yīng)的解決方案。 首先,充放電不一致的主要原因之一是電解質(zhì)濃度不均勻。超級(jí)電容器中的電解質(zhì)起到傳導(dǎo)電荷的作用,而
    的頭像 發(fā)表于 02-03 15:02 ?1432次閱讀

    法拉電容器怎么充電?為什么法拉電容器能夠快速大容量充放電

    充電的可行性以及法拉電容器能夠快速大容量充放電的原因。 首先,我們來了解一下法拉電容器的基本原理。法拉電容器利用了電解質(zhì)溶液中的離子在兩個(gè)電極之間的移動(dòng)來儲(chǔ)存電能。它的結(jié)構(gòu)由兩個(gè)電極和一個(gè)電解
    的頭像 發(fā)表于 02-02 13:44 ?1846次閱讀

    關(guān)于固態(tài)電解質(zhì)的基礎(chǔ)知識(shí)

    固態(tài)電解質(zhì)在室溫條件下要求具有良好的離子電導(dǎo)率,目前所采用的簡單有效的方法是元素替換和元素?fù)诫s。
    的頭像 發(fā)表于 01-19 14:58 ?1.6w次閱讀
    關(guān)于固態(tài)<b class='flag-5'>電解質(zhì)</b>的基礎(chǔ)知識(shí)

    鋰電池自放電和過放電現(xiàn)象的研究

    和過放電現(xiàn)象,這對(duì)其性能和壽命產(chǎn)生了一定的影響。本文將詳細(xì)探討鋰電池自放電和過放電現(xiàn)象的原因和影響,并提出相應(yīng)的解決方法。 首先,我們來了解一下鋰電
    的頭像 發(fā)表于 01-10 11:29 ?1004次閱讀

    鋰電充放電檢測(cè)設(shè)備需求“起勢(shì)”

    下沉細(xì)分市場多領(lǐng)域協(xié)同帶動(dòng)鋰電充放電檢測(cè)設(shè)備需求增長。
    的頭像 發(fā)表于 12-25 09:33 ?895次閱讀
    <b class='flag-5'>鋰電</b><b class='flag-5'>充放電</b>檢測(cè)設(shè)備需求“起勢(shì)”

    一種有機(jī)-無機(jī)非對(duì)稱固態(tài)電解質(zhì),實(shí)現(xiàn)長循環(huán)穩(wěn)定的高壓鋰電

    通過非對(duì)稱有機(jī)-無機(jī)復(fù)合固態(tài)電解質(zhì)協(xié)同效應(yīng),改善了不同陰極(LiFePO4和LiNi0.8Mn0.1Co0.1O2)/鋰電池的循環(huán)穩(wěn)定性,顯著拓寬了電化學(xué)穩(wěn)定窗口(5.3 V)并大大增強(qiáng)了鋰枝晶的抑制。
    的頭像 發(fā)表于 12-10 09:23 ?1498次閱讀
    一種有機(jī)-無機(jī)非對(duì)稱固態(tài)<b class='flag-5'>電解質(zhì)</b>,實(shí)現(xiàn)長循環(huán)穩(wěn)定的高壓<b class='flag-5'>鋰電</b>池

    離子-偶極作用誘導(dǎo)實(shí)現(xiàn)PVDF電解質(zhì)游離殘留溶劑封裝

    由于高離子導(dǎo)電性和機(jī)械強(qiáng)度,聚(氟乙烯)(PVDF)電解質(zhì)越來越受到固態(tài)鋰電池的關(guān)注,但高活性殘留溶劑嚴(yán)重困擾著循環(huán)穩(wěn)定性。
    的頭像 發(fā)表于 11-21 10:09 ?1878次閱讀
    離子-偶極作用誘導(dǎo)實(shí)現(xiàn)PVDF<b class='flag-5'>電解質(zhì)</b>游離殘留溶劑封裝

    鋰電池是如何工作的?鋰電池充電過程 鋰電放電過程

    。 首先,讓我們了解一下鋰電池的構(gòu)造。鋰電池由正極、負(fù)極電解質(zhì)和隔膜組成。正極和負(fù)極通常由導(dǎo)電的材料制成,例如正極常使用鋰含氧化物,而
    的頭像 發(fā)表于 11-10 14:41 ?1327次閱讀

    利用三甲基硅化合物改善硫酸鹽固態(tài)電解質(zhì)與陰極材料的界面穩(wěn)定性

    這篇研究文章的背景是關(guān)于固態(tài)鋰電池(ASSBs)中硫化物基固態(tài)電解質(zhì)的界面穩(wěn)定性問題。
    的頭像 發(fā)表于 11-01 10:41 ?1138次閱讀
    利用三甲基硅化合物改善硫酸鹽固態(tài)<b class='flag-5'>電解質(zhì)</b>與陰極材料的界面穩(wěn)定性