0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

探索5G射頻技術

jf_tyXxp1YG ? 來源:中科聚智 ? 2023-11-25 11:47 ? 次閱讀

深入了解5G NR 現在,您可能對5G已有基本認識,下面讓我們再深入一些,了解5G的支持技術。5G的骨干技術如下:

?頻譜技術

?動態(tài)頻譜共享技術?擴展正交頻分復用技術(OFDM),一種將更多數字數據編碼到多個載波頻率的方法。 ?多進多出技術(MIMO),其中包括同時利用多個天線的技術,以提高數據速度和減少誤差。 ?波束賦形技術,將來自多個天線的射頻信號合并成一個指向特定設備或接收器的強信號。 ?小蜂窩技術或網絡密致化技術,將多個蜂窩站點密集放置,以提高可用容量。 另外,這些技術還將顯著強化現有的4G LTE網絡,提高網絡靈活性、伸縮性和效率。其中部分技術(如5G頻譜)已在前文講解,其他幾項技術我們將在以下各節(jié)分別講解。

#頻譜與動態(tài)頻譜共享# 前文提到,為滿足增強型移動寬帶(eMBB)的需求(例如:1Gbps或以上的數據率速度,以及采納用戶設備所需的數據率),頻譜與動態(tài)頻譜共享是兩項必需的技術。

相對于4G LTE ,5G顯著提高了數據率。不過,5G的大部分優(yōu)勢都源于新的5G頻帶所獲得的帶寬增強,只有少部分數據吞吐量的提高是因為實施了5G NR技術。如您所見,頻譜的增加給下行鏈路的數據率帶來指數級增長,而載波聚合與5G NR技術升級僅貢獻19%的增長。

e098a570-8b3b-11ee-939d-92fbcf53809c.png

4G LTE與5G NR下載鏈路數據完善情況比較

#頻分復用(OFDM)# 在5G NR開發(fā)過程中,第一步是為5G NR設計物理層,其中波形是一個核心技術組成。在審查多個提案后,3GPP選擇擴展使用頻分復用技術,同時在上行鏈路和下行鏈路為5G添加循環(huán)前綴頻分復用(CP-OPDM)波型。 CP-OFDM技術利用多個平行窄帶子載波來傳輸信息,而不使用單個寬帶載波。該技術定義充分,已在4G LTE下行鏈路和Wi-Fi通信標準成功實施,因此也適合用于5G NR設計。

不過,5G NR上行鏈路還提供了一種不同的波形格式,這種波形格式類似4G LTE上行鏈路使用的波形模式離散傅立葉變換擴頻正交頻分復用(DFT-S-OFDM)波形。DFT-S-OFDM波形是一種4G采用的波形,結合了循環(huán)前綴正交頻分復用和低峰均比(PAPR)的優(yōu)點。DFT-S-OFDM波形對上行鏈路有幫助,對于高功率的2級功率應用或者當用戶設備位于基站蜂窩的邊緣位置,遠離信號塔時,DFT-S-OFDM可能是首選波形。

在靈活性上,5G NR提供的子載波間隔方案還超越了LET提供的固定15kHz子載波間隔。5G NR提供的子載波間隔包括FR2,最大間隔達到240kHz。靈活的載波間隔可用于適當支持5G NR所需的多元化頻帶、頻譜類型及部署模式。 DFT-S-OFDM非常類似于LTE上行鏈路使用的單頻分復用接入(SCFDMA),CP-OFDM非常類似于LTE下行鏈路使用的正交頻分復用接入(OFDMA)。3GPP之所以選擇CP-OFDM,原因如下:

? CP-OFDM能夠面向復雜程度較低的接收器延展。

?在一些最重要的5G性能指標上(例如:與多天線技術的兼容性),CP-OFDM排名最高。 ?CP-OFDM的時域控制良好,這一點對于低延時關鍵應用和時分雙工(TDD)部署具有重要意義。 ? 與其他波形相比,CP-OFDM對于相位噪聲和多普勒效應(頻率變化與波長變化)的耐受性更強。 ?CP-OFDM在MIMO空間復用上的效率更高,這相當于提高了頻譜效率。 ? 在大規(guī)范部署條件下,CP-OFDM非常適合上行鏈路傳輸。

#5G MIMO與大規(guī)模MIMO# 大規(guī)模MIMO技術是MIMO技術的擴展。MIMO技術有效地、重復地利用同一帶寬,以便傳輸更多數據,實現對頻譜更加高效的利用。

今天許多LTE MIMO基站都最多由八根天線組成,接收器上有一到二根天線。這使得基站能夠同時向8名用戶分別發(fā)送8條數據流;如果合二為一,則能夠同時向4名用戶分別發(fā)送2條數據流。

隨著4G向大規(guī)模MIMO的轉移,天線數量出現指數增至多達16根、32根、64根、128根,甚至更多。這些天線的集合被稱為“天線陣列系統(tǒng)”(AAS)。這有助于通過波束賦形技術,將能量集中到較小的空間區(qū)域(參見下節(jié)),以極大改善吞吐量和輻射能量效率。

大規(guī)模MIMO有助于:? 防止在非理想方向上傳輸數據,減輕干涉

?減少延時,從而提高速度和可靠性

?減少通知和連接的衰落與掉線

? 同時服務大規(guī)模用戶群

?推出二維波束賦形

大規(guī)模MIMO不僅能夠增加蜂窩容量和蜂窩效率,還能利用銳利天線波束方向圖(由多個天線元素組成)平行發(fā)送和接收射頻信號。在采用大規(guī)模MIMO技術的基站,每條數據流都有獨特的輻射方向圖,因此不會相互干涉。每條數據流的信號強度都按照目標用戶設備的方向傳送;在其他用戶設備的方向,信號強度則被減少,以降低干涉。

#波束賦形# 波束賦形技術對天線陣列中的單根天線的量級和相位進行適當加權,利用多根天線來控制波形的傳送方向,為5G帶來顯著優(yōu)勢。由于波束賦形技術是大規(guī)模MIMO系統(tǒng)使用的一項技術,因此有時“波束賦形”與“大規(guī)模MIMO”這兩個術語可以互換使用。

波束賦形技術被用于毫米波頻譜,基本頻率在24GHz以上。該頻譜使用的是200至400MHz的寬信道帶寬,因此提供了超高的數據傳輸速度。承運商將使用該技術部署5G固定無線接入服務(FWA),作為“最后一英里”連接解決方案,為家庭和企業(yè)提供高速連接。

固定無線接入毫米波有一個缺點:雨、植物或建筑物等,都可能造成毫米波信號衰減。在這些情況下,有時候難以保持用戶設備處于視距范圍,因此會造成信號延遲、衰減以及到達信號發(fā)生變化。不過,波束賦形技術有助于減少這些負面效果。通過利用大規(guī)模MIMO和波束賦形技術帶來的多條路徑,即使在視距受限的情況下,也可以對天線元素與用戶設備之間的空間信道進行定性及數字化編碼和解碼,從而有助于減少信號損失。

e0b2efc0-8b3b-11ee-939d-92fbcf53809c.png

大規(guī)模MIMO與波束賦形 #網絡密致化# 今天,無線基礎設施網絡包含眾多元素,有大蜂窩基站、地鐵蜂窩基站,還有室內外分布式天線系統(tǒng)和小蜂窩基站。這些元素在異質網絡(HetNet)環(huán)境下共同工作,如下圖所示。

e0c09b02-8b3b-11ee-939d-92fbcf53809c.png

無線基礎設施異質網絡與小蜂窩基站集成

所謂“密致化”,是一種通過增強蜂窩站點,提高可用蜂窩容量的技術。這種蜂窩可以是微蜂窩或小蜂窩,以應對網絡容量緊張的區(qū)域。另外,這些蜂窩還可以分擔周邊大基站和微基站的通信流量。

小蜂窩基站是一種將蜂窩基站拆分成更小型群組的迷你基站。另外,還可根據覆蓋面積的大小,細分為皮蜂窩基站、微蜂窩基站和飛蜂窩基站,并且這些基站既可以設在室內,也可以設在室外。

e0cfaba6-8b3b-11ee-939d-92fbcf53809c.png

微蜂窩基站與小蜂窩基站之間存在重要區(qū)別。微蜂窩基站有一條大型數據管道通向網絡。小蜂窩基站則將這條管道拆分成覆蓋一定區(qū)域的多條小型管道。小蜂窩基站的主要目標是提高大蜂窩基站的邊緣數據容量或者覆蓋大蜂窩不能覆蓋的區(qū)域(覆蓋不良),最終目標是完善數據、速度和網絡效率。下圖所示為小蜂窩集成網絡。

e0e368d0-8b3b-11ee-939d-92fbcf53809c.png

小蜂窩集成網絡

小蜂窩:

?提高數據容量,尤其是高端購物區(qū)或城市中心區(qū)等高度稠密的區(qū)域。 ?消除了高成本的屋頂系統(tǒng)和設備或租用成本。

?提高了手機性能。

在討論密致化與小蜂窩基站時,我們需要考慮物聯網設備使用多種無線技術進行連接。小蜂窩基站的實施以及眾多設備的互聯,將構成大規(guī)模、超可靠、低延時機械類通信(MTC)的一個關鍵方面。 物聯網的傳輸類型大致分為以下四種:?有線傳輸

?中短距離無線傳輸(從藍牙到網狀網絡Wi-Fi、ZigBee

? 長距離無線傳輸(4G LTE和5G蜂窩),低功率廣域網(LPWAN)

?衛(wèi)星傳輸

5G將可實現大規(guī)模物聯網,大規(guī)模物聯網能夠支持數百億個設備、物品和機器,并且這些設備都需要連接無處不在。這些設備可以是移動設備、漫游設備,還可以是固定設備。 #5G NR頻譜載波聚合#“載波聚合”是一種將兩個以上載波合并成一條數據信道,以增加數據容量的技術。通過利用現有網絡頻譜,載波聚合技術讓運營商能夠提供更高的上行鏈路和下行鏈路數據率,因此能夠提高網絡性能和確保高質量用戶體驗。載波聚合為4G提高用戶數據吞吐量做出重要貢獻,并且還將在5G起到同樣重要的作用。為了增加容量,全球運營商都在積極地添加載波聚合頻帶和功能(例如:MIMO)。

相關命名慣例因為5G頻帶而發(fā)生改變。5G命名重新加入字母“n”(即n77或n78),用以指代“New Radio”(即新空口);而4G命名則使用字母“B”指代“頻帶”。5G NR使用的LTE頻帶仍將使用相同的頻帶編號,只是增加了n標識符。

e1173106-8b3b-11ee-939d-92fbcf53809c.png

5G載波聚合將提供帶有非對稱上下載功能的多重連接能力,并且在毫米波頻率提供高達700MHz的信道帶寬。在7GHz以下頻帶,可以利用4條100MHz信道,實現400MHz瞬時帶寬。 在頻分雙工(FDD)或時分雙工(TDD)條件下,每條分量載波能夠獲得1.4MHz、3MHz、5MHz、10MHz、15MHz或20MHz帶寬。因此,如果有5條20MHz分量載波,那么利用載波聚合,最高可以實現100MHz帶寬。在時分雙工條件下,分量載波的帶寬和數量必須在上下行鏈路保持相同。4G LTE-Advanced Pro能夠提供最高100MHz帶寬,支持32條分量載波,因此最高帶寬可以達到640MHz。于是在5G NR條件下,還有另外一個載波聚合方案,該方案被稱為“雙重連接”,能夠聚合4G LTE和5G NR頻帶。探索射頻前端技術的不同

5G愿景的真正實現,還需要更多創(chuàng)新。網絡基站和用戶設備(例如:手機)變得越來越纖薄和小巧,能耗也變得越來越低。為了適合小尺寸設備,許多射頻應用所使用的印刷電路板(PCB)也在不斷減小尺寸。因此,射頻應用供應商必須開發(fā)新的封裝技術,盡量減小射頻組件的占位面積。再進一步,部分供應商開始開發(fā)系統(tǒng)級封裝辦法(SiP),以減少射頻組件的數量,盡管這種辦法將會增加封裝成本。

系統(tǒng)級封裝辦法正在被用于射頻前端,而射頻前端包含基站與天線中間的所有組件。

一個典型的射頻前端由開關、濾波器放大器及調諧組件組成。這些技術設備的尺寸不斷減小,并且相互集成度不斷加大。結果,在手機、小蜂窩、天線陣列系統(tǒng)、Wi-Fi等5G應用中,射頻前端正在變成一個復雜的、高度集成的系統(tǒng)封包。

不管怎樣,5G愿景的實現都需要射頻技術和封裝技術的顛覆性創(chuàng)新。

#氮化鎵技術#

氮化鎵(GaN)是一種二進制III/V族帶隙半導體,非常適合用于高功率、耐高溫晶體管。氮化鎵功率放大器技術的5G通信潛力才剛剛顯現。氮化鎵具有高射頻功率、低直流功耗、小尺寸及高可靠性等優(yōu)勢,讓設備制造商能夠減小基站體積。反過來,這又有助于減少5G基站信號塔上安裝的天線陣列系統(tǒng)的重量,因此可以降低安裝成本。另外,氮化鎵還能在各種毫米波頻率上,輕松支持高吞吐量和寬帶寬。

氮化鎵技術最適合實現高有效等向輻射基站功率(EIRP),如下圖所示。美國聯邦通信委員會定義了非常高的EIRP限值,規(guī)定對于28GHz和39GHz頻帶,每100MHz帶寬需要達到75dBm功率。因此帶來了哪些挑戰(zhàn)?相關設備的搭建既要滿足這些目標,又要將成本、尺寸、重量和功率等保持在移動網絡運營商的預算范圍內。氮化鎵技術是關鍵;相比于其他技術,氮化鎵技術在達到以上高EIRP值時,使用的元件更少, 并且輸出功率更高。

e136bc24-8b3b-11ee-939d-92fbcf53809c.png

半導體技術與EIRP需求的適應性比較

對于高功率基站應用,相比于鍺硅(SiGe)或硅(Si)等其他功率放大器技術,在相同EIRP目標值下,氮化鎵技術的總功率耗散更低,如下圖所示。氮化鎵減少了整體系統(tǒng)的重量和復雜性,同時還仍保持較低功耗,因此更適合塔上安裝系統(tǒng)的設計。

e154ab62-8b3b-11ee-939d-92fbcf53809c.png

氮化鎵減少了基站設計的復雜性,降低了成本

氮化鎵技術的部分重要屬性:

可靠性與結實性:氮化鎵的功率效率更高,因此降低了熱量輸出。氮化鎵的帶隙寬,能夠耐受更高的工作溫度,因此可以減少緊湊區(qū)域的冷卻需求。由于氮化鎵能夠在塔上應用(例如:天線陣列系統(tǒng))的高溫條件下工作,因此可以不需要冷卻風扇,以及/或者可以減少散熱器的體積。歷史上,冷卻風扇由于其機械性質,一直是造成外場故障的首要原因。大型散熱器不僅硬件本身構成重大成本,并且由于重量原因,還可能帶來額外的人力成本。使用氮化鎵可以讓人們不再使用這些高成本的散熱辦法。

電流消耗:氮化鎵降低了工作成本,產生的熱量也更少。另外,低電流還有助于減少系統(tǒng)功耗和降低電源需求。再者,由于功耗降低,服務提供商也減少了運營支出。

功率能力:相比于其他半導體技術,氮化鎵設備提供更高的輸出功率。市場的發(fā)展趨勢以及對于基站高功率輸出的需求,更加有利于氮化鎵技術的發(fā)展。

頻率帶寬:氮化鎵擁有高阻抗和低柵極電容,能夠實現更大的工作帶寬和更高的數據傳輸速度。另外,氮化鎵技術還在3GHz以上擁有良好的射頻性能,其他技術(例如:硅)在這個頻率范圍的性能卻不佳。今天氮化鎵模塊和功率放大器提供的寬帶性能,能夠支持5G前所未有的帶寬需求。

集成:5G需要體積更小的解決方案,這促使供應商將大規(guī)模、包含多個技術的離散式射頻前端,替換成單體式全面集成解決方案。氮化鎵制造商開始抓住這個潮流,開發(fā)那些能夠將收發(fā)鏈條整合到單一封裝的全面集成解決方案。這進一步減少了系統(tǒng)的體積、重量和上市時間。

#體聲波濾波器技術#

由于新增頻帶和載波聚合,再加上蜂窩通信必須與許多其他無線標準共存的事實,干涉問題比以往更加嚴重。要減少頻帶與標準之間的干涉,濾波器技術是關鍵。

表面聲波濾波器和體聲波濾波器具有占位面積小、性能優(yōu)異、經濟適用等優(yōu)勢,在移動設備濾波器市場上居于主導地位。

體聲波濾波器最適合1GHz至6GHz的頻段,表面聲波濾波器最適合1GHz以下的頻段。因此,體聲波的5G “甜蜜點”是低于7GHz的頻段。

體聲波和表面聲波能夠減少LTE、Wi-Fi、自動通信以及新的7GHz以下5G頻率的干涉,同時又能滿足制造商嚴格的體積和性能標準。

對于智能手機設計者, 5G的推出對于電池壽命和主板空間又是一個挑戰(zhàn)。隨著每代產品推陳出新,集成的壓力和縮小體積的壓力不斷增加。在較高頻率下工作,意味著功率放大器效率降低,同時天線和線路的損耗增加。另外,5G手機還需要增加射頻開關,因此帶來更多鏈路預算損失。(所謂“鏈路預算”,是指在電信系統(tǒng)中,從發(fā)送器經由電纜、走線等直至接收器,在這一過程中產生的所有增益與損失的總和。)

不出意外,從4G到5G,手機里安裝的濾波器數量急劇增加,如下圖所示。載波聚合是濾波器數量增加的主要促成因素。隨著全球載波聚合以及手機中標準和頻帶的數量越來越多,濾波器技術方興未艾。另外,在載波聚合以及手機性能優(yōu)化需求的驅使下,濾波器的復雜性也在增加。

e174cec4-8b3b-11ee-939d-92fbcf53809c.png

智能手機與集成濾波器技術

體聲波技術的一項優(yōu)勢就是散熱,如下圖所示。如前所述,放大器功率的增加導致熱量的增加。如果為補償系統(tǒng)功率損耗或信號范圍問題而增加放大器的功率,則發(fā)送濾波器產生的熱量也將增加。該熱量對濾波器的性能和工作壽命都有不利影響,并且會在衰減區(qū)域和傳輸頻帶造成頻率偏移。體聲波技術有助于減輕這一問題,因為SMR體聲波濾波器(BAW-SMR)產生垂直熱通量,有助于將熱量導離設備。在高頻率下,反射器層變得更薄,這更加有助于體聲波諧振器的散熱。

e18b28f4-8b3b-11ee-939d-92fbcf53809c.png

SMR BAW濾波器功率處置方式

#射頻技術、封裝及設計# 射頻前端由多個半導體技術設備組成。眾多的5G應用需要五花八門的處理技術、設計技巧、集成辦法和封裝辦法,以滿足各個獨特用例的需求。 對于5G的7GHz以下頻段,相應的射頻前端解決方案需要創(chuàng)新封裝辦法,例如,提高組件排列的緊湊度;縮短組件之間的導線長度,以盡量減少損耗;采用雙面安裝;劃區(qū)屏蔽;以及使用更高質量的表面安裝技術組件等。 所有5G用例都需要射頻前端技術。根據射頻功能、頻帶、功率等級等性能要求,射頻半導體技術的選擇不盡相同。如下圖所示,每個射頻功能和應用分別對應多個半導體技術。

e1987b8a-8b3b-11ee-939d-92fbcf53809c.png

5G射頻通信技術 這些應用需要五花八門的處理技術、設計技巧、集成辦法和封裝辦法,以滿足各個獨特用例的特定需求。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯系本站處理。 舉報投訴
  • 頻譜
    +關注

    關注

    7

    文章

    874

    瀏覽量

    45535
  • 射頻技術
    +關注

    關注

    4

    文章

    142

    瀏覽量

    35902
  • 5G
    5G
    +關注

    關注

    1352

    文章

    48266

    瀏覽量

    562601

原文標題:探索5G射頻技術

文章出處:【微信號:中科聚智,微信公眾號:中科聚智】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    華為5g技術介紹 華為5g技術的優(yōu)勢

    華為5G技術是當今全球通信技術領域的佼佼者,以其卓越的性能和廣泛的應用前景而備受矚目。以下是對華為5G技術的介紹及其優(yōu)勢分析: 一、華為
    的頭像 發(fā)表于 10-18 18:21 ?299次閱讀

    探索未來通信|光耦技術5G網絡通信的應用 #光耦 #5G技術

    網絡通信5G
    晶臺光耦
    發(fā)布于 :2024年07月26日 08:46:30

    嵌入式設備中的4G/5G模塊管理

    在高度數字化的智能時代,Linux嵌入式板卡在各個領域都發(fā)揮著重要作用,然而,隨著4G/5G技術的普及,如何高效、穩(wěn)定地管理這些嵌入式設備上的無線模塊,成為了用戶面臨的一大挑戰(zhàn)——嵌入式設備中的4
    發(fā)表于 07-13 16:45

    易為芯光電5G射頻線焊接

    5G射頻
    jf_87022464
    發(fā)布于 :2024年06月17日 10:34:31

    請問mx880 5G數據終端可以設置優(yōu)先5G網絡嗎?

    固件版本固件版本5G_DTU master 1.2.5 當地5G網絡夜里會關閉, 設置lte?nr 或者nul?nr,夜里自動跳轉4G 網絡, 白天有5G 網絡時候不能自動切回來,得手
    發(fā)表于 06-04 06:25

    甬矽電子高密度SiP技術革新5G射頻模組

    甬矽電子,一家致力于技術革新的企業(yè),近日在高密度SiP技術領域取得重大突破,為5G射頻模組的開發(fā)和量產注入了新動力。
    的頭像 發(fā)表于 05-31 10:02 ?544次閱讀

    5G基站關鍵射頻參數的測量

    本文篇幅較長,分成三部分:概述與5G信號通用解調設置、發(fā)射機射頻參數測試、接收機測試?;臼?b class='flag-5'>5G無線接入網絡中的重要節(jié)點,其射頻性能與5G
    的頭像 發(fā)表于 04-18 08:28 ?1979次閱讀
    <b class='flag-5'>5G</b>基站關鍵<b class='flag-5'>射頻</b>參數的測量

    美格智能聯合羅德與施瓦茨完成5G RedCap模組SRM813Q驗證,推動5G輕量化全面商用

    智能5G RedCap模組SRM813Q的射頻和吞吐量性能,展現了美格智能在無線通信模組領域領先的技術實力和創(chuàng)新能力。 羅德與施瓦茨是全球領先的測試與測量解決方案供應商,在測試與測量、信息
    發(fā)表于 02-27 11:31

    5G 外置天線

    5G外置天線 新品介紹 5G圓頂天線和Whip天線旨在提供617 MHz至6000 MHz的寬帶無縫高速互聯網接入連接解決方案。這些天線的特點是高增益,即使在具有挑戰(zhàn)性的環(huán)境中也能確保強大的信號
    發(fā)表于 01-02 11:58

    4G/5G MiMo鯊魚鰭#天線 解決方案#無線通信 #射頻與天線 #通信 #5G #移動通信網絡

    射頻移動通信5G
    虹科衛(wèi)星與無線電通信
    發(fā)布于 :2023年12月15日 18:03:22

    5G射頻PA架構設計

    自2019年5G元年開始,過去3年5G建設如火如荼的進行。5G快速發(fā)展中,受益最大的就是射頻前端芯片。根據Yole的預測,至2026年,全球射頻
    的頭像 發(fā)表于 12-01 09:53 ?1158次閱讀
    <b class='flag-5'>5G</b><b class='flag-5'>射頻</b>PA架構設計

    位到波束:5G毫米波無線電射頻技術演進

    電子發(fā)燒友網站提供《位到波束:5G毫米波無線電射頻技術演進.pdf》資料免費下載
    發(fā)表于 11-22 14:58 ?0次下載
    位到波束:<b class='flag-5'>5G</b>毫米波無線電<b class='flag-5'>射頻</b><b class='flag-5'>技術</b>演進

    5G毫米波無線電射頻技術課件下載

    電子發(fā)燒友網站提供《5G毫米波無線電射頻技術課件下載.pdf》資料免費下載
    發(fā)表于 11-22 09:17 ?10次下載
    <b class='flag-5'>5G</b>毫米波無線電<b class='flag-5'>射頻</b><b class='flag-5'>技術</b>課件下載

    『這個知識不太冷』探索5G射頻技術(下)

    ( 上篇 )精彩內容 ? 探索射頻前端技術的不同 5G愿景的真正實現,還需要更多創(chuàng)新。網絡基站和用戶設備(例如:手機)?變得越來越纖薄和小巧,能耗也變得越來越低。為了適合小尺寸設備,許
    的頭像 發(fā)表于 11-07 12:15 ?382次閱讀
    『這個知識不太冷』<b class='flag-5'>探索</b><b class='flag-5'>5G</b><b class='flag-5'>射頻</b><b class='flag-5'>技術</b>(下)

    高通憑借驍龍X35 5G調制解調器及射頻系統(tǒng)推動全球5G RedCap擴展

    要點 — ?? OEM廠商和運營商選擇驍龍X35 5G調制解調器及射頻系統(tǒng)推動5G RedCap部署,打造外形更小巧、更具成本效益的5G終端,并于2024年開始發(fā)布。 ?? 全球移動領
    的頭像 發(fā)表于 11-06 21:50 ?704次閱讀
    高通憑借驍龍X35 <b class='flag-5'>5G</b>調制解調器及<b class='flag-5'>射頻</b>系統(tǒng)推動全球<b class='flag-5'>5G</b> RedCap擴展