0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

memory compaction如何實現(xiàn)及原理分析

Linux閱碼場 ? 來源:Linux閱碼場 ? 作者:Linux閱碼場 ? 2021-07-27 09:24 ? 次閱讀

作者簡介

趙金生,linux內(nèi)核愛好者,就職于杭州某大型安防公司,擔(dān)任Linux BSP軟件工程師。對進(jìn)程調(diào)度,內(nèi)存管理有所了解。希望能通過對linux的學(xué)習(xí),提升產(chǎn)品軟件性能及穩(wěn)定性。該文章為私人學(xué)習(xí)總結(jié),不存在公司網(wǎng)絡(luò)安全問題。

memory compaction簡介

隨著系統(tǒng)的運行,經(jīng)過不同用戶的分配請求后,頁框會變得十分分散,導(dǎo)致此段頁框被這些正在使用的零散頁框分為一小段一小段非連續(xù)頁框,這使得在需要分配內(nèi)存時很難找到物理上連續(xù)的頁框。

現(xiàn)代處理器不再限于使用傳統(tǒng)的4K大小的頁框;它們可以在進(jìn)程的部分地址空間中支持大得多的頁(huge pages)。使用巨頁會帶來真正的性能優(yōu)勢,主要原因是減小了對處理器的轉(zhuǎn)換后備緩沖區(qū)(translation lookaside buffer)的壓力。但是使用巨頁要求系統(tǒng)能夠找到物理上連續(xù)的內(nèi)存區(qū)域,這些區(qū)域不僅要足夠大,而且還必須確保按適當(dāng)方式滿足字節(jié)對齊的要求。

在一個已經(jīng)運行了一段時間的系統(tǒng)上會產(chǎn)生大量的不連續(xù)的page, 要想找到符合這些高階(high-order)條件的內(nèi)存空間非常具有挑戰(zhàn)性,memory compaction的作用就是解決high-order內(nèi)存分配失敗問題,與buddy system機制做一個互補。

memory compaction原理

內(nèi)存碎片整理以pageblock為單位。

在內(nèi)存碎片整理開始前,會在zone的頭和尾各設(shè)置一個指針,頭指針從頭向尾掃描可移動的頁,而尾指針從尾向頭掃描空閑的頁,當(dāng)他們相遇時終止整理。

簡單示意圖:需要明確的是:實際情況并不是與圖示的情況完全一致。頭指針每次掃描一個符合要求的pageblock里的所有頁框,當(dāng)pageblock不為MIGRATE_MOVABLE、MIGRATE_CMA、MIGRATE_RECLAIMABLE時會跳過這些pageblock,當(dāng)掃描完這個pageblock后有可移動的頁框時,會變?yōu)槲仓羔樢詐ageblock為單位向前掃描可移動頁框數(shù)量的空閑頁框,但是在pageblock中也是從開始頁框向結(jié)束頁框進(jìn)行掃描,最后會將前面的頁框內(nèi)容復(fù)制到這些空閑頁框中。

這里的移動是將頁框中的數(shù)據(jù)copy拷貝到可移動的空閑頁框當(dāng)中,此時原有的movable page變成free page。所以并不是頁框自身的移動而是數(shù)據(jù)的移動。

通過下圖的操作就可以分配出一個order = 2或者是order = 3的連續(xù)的可用空間,可用于滿足更high-order的內(nèi)存分配。當(dāng)然,這里展示的流程和真實系統(tǒng)比起來已經(jīng)大大簡化了。實際的內(nèi)存域會大得多,這意味著掃描的工作量也會大很多,但由此獲得的空閑區(qū)也可能更大。

ee963ef2-e3dc-11eb-a97a-12bb97331649.png

實際的內(nèi)存碎片,還有一個問題就是在整理算法中會將掃描中識別為不滿足整理要求的內(nèi)存塊標(biāo)識為 “可忽略”(“skip”,即不執(zhí)行規(guī)整)。作為一種優(yōu)化,目的是防止運行沒必要的規(guī)整操作。

比如系統(tǒng)正在對zone進(jìn)行內(nèi)存碎片整理,首先,會從可移動頁框開始位置向后掃描一個pageblock,得到一些可移動頁框,然后空閑頁框從開始位置向前掃描一個pageblock,得到一些空閑頁框,然后將可移動頁框移動到空閑頁框中,之后再繼續(xù)循環(huán)掃描。對一個pageblock進(jìn)行掃描后,如果無法從此pageblock隔離出一個要求的頁框,這時候就會將此pageblock標(biāo)記為跳過(skip)。

假設(shè)內(nèi)存碎片整理可移動頁掃描是從zone的第一個頁框開始,掃描完一個pageblock后,沒有隔離出可移動頁框,則標(biāo)記此pageblock的跳過標(biāo)記PB_migrate_skip,然后將zone-》compact_cached_migrate_pfn設(shè)置為此pageblock的結(jié)束頁框。

這樣,在下次對此zone進(jìn)行內(nèi)存碎片整理時,就會直接從此pageblock的下一個pageblock開始,把此pageblock跳過了。同理,對于空閑頁掃描也是一樣。這樣就必須更新zone pageblock的起始地址與結(jié)束地址:

eec6394a-e3dc-11eb-a97a-12bb97331649.png

以上就是內(nèi)存碎片整理的基本原理了。

memory compaction如何實現(xiàn)

3.1、數(shù)據(jù)結(jié)構(gòu)

在內(nèi)存碎片整理中,可以移動的頁框有MIGRATE_RECLAIMABLE、MIGRATE_MOVABLE與MIGRATE_CMA這三種類型的頁框。

而因為內(nèi)存碎片整理分為同步和異步。在異步過程中,只會移動MIGRATE_MOVABLE和MIGRATE_CMA這兩種類型的頁框。因為這兩種類型的頁框處理,是不會涉及到IO操作的。而在同步過程中,這三種類型的頁框都會進(jìn)行移動,因為MIGRATE_RECLAIMABLE基本上都是文件頁,在移動過程中,有可能要將臟頁回寫,會涉及到IO操作,也就是在同步過程中,是會涉及到IO操作的。

1、migrate_mode遷移模式:

enum migrate_mode { MIGRATE_ASYNC, MIGRATE_SYNC_LIGHT, MIGRATE_SYNC,};

2、compact_priority

enum compact_priority { COMPACT_PRIO_SYNC_FULL, MIN_COMPACT_PRIORITY = COMPACT_PRIO_SYNC_FULL, COMPACT_PRIO_SYNC_LIGHT, MIN_COMPACT_COSTLY_PRIORITY = COMPACT_PRIO_SYNC_LIGHT, DEF_COMPACT_PRIORITY = COMPACT_PRIO_SYNC_LIGHT, COMPACT_PRIO_ASYNC, INIT_COMPACT_PRIORITY = COMPACT_PRIO_ASYNC};

3、compact_result用于壓縮處理函數(shù)的返回值

enum compact_result { /* For more detailed tracepoint output - internal to compaction */ COMPACT_NOT_SUITABLE_ZONE,//trace用于調(diào)試輸出或內(nèi)部使用 /* * compaction didn‘t start as it was not possible or direct reclaim * was more suitable */ COMPACT_SKIPPED,//跳過壓縮,因為無法執(zhí)行壓縮或直接回收更合適 /* compaction didn’t start as it was deferred due to past failures */ COMPACT_DEFERRED,

/* compaction not active last round */ COMPACT_INACTIVE = COMPACT_DEFERRED,

/* For more detailed tracepoint output - internal to compaction */ COMPACT_NO_SUITABLE_PAGE, /* compaction should continue to another pageblock */ COMPACT_CONTINUE,

/* * The full zone was compacted scanned but wasn‘t successfull to compact * suitable pages. */ COMPACT_COMPLETE,//已完成所有區(qū)域的壓縮,但是尚未確??梢酝ㄟ^壓縮分配的頁面 /* * direct compaction has scanned part of the zone but wasn’t successfull * to compact suitable pages. */ COMPACT_PARTIAL_SKIPPED,

/* compaction terminated prematurely due to lock contentions */ COMPACT_CONTENDED,

/* * direct compaction terminated after concluding that the allocation * should now succeed */ COMPACT_SUCCESS,//在確??煞峙漤撁姘踩?,直接壓縮結(jié)束};

4、compact_control需要進(jìn)行內(nèi)存碎片整理時,總是需要初始化該結(jié)構(gòu)體

struct compact_control { /* 掃描到的空閑頁的頁的鏈表 */ struct list_head freepages; /* List of free pages to migrate to */ /* 掃描到的可移動的頁的鏈表 */ struct list_head migratepages; /* List of pages being migrated */ /* 空閑頁鏈表中的頁數(shù)量 */ unsigned long nr_freepages; /* Number of isolated free pages */ /* 可移動頁鏈表中的頁數(shù)量 */ unsigned long nr_migratepages; /* Number of pages to migrate */ /* 空閑頁框掃描所在頁框號 */ unsigned long free_pfn; /* isolate_freepages search base */ /* 可移動頁框掃描所在頁框號 */ unsigned long migrate_pfn; /* isolate_migratepages search base */ /* 內(nèi)存碎片整理使用的模式: 同步,輕同步,異步 */ enum migrate_mode mode; /* Async or sync migration mode */ /* 是否忽略pageblock的PB_migrate_skip標(biāo)志對需要跳過的pageblock進(jìn)行掃描 ,并且也不會對pageblock設(shè)置跳過 * 只有兩種情況會使用 * 1.調(diào)用alloc_contig_range()嘗試分配一段指定了開始頁框號和結(jié)束頁框號的連續(xù)頁框時; * 2.通過寫入1到sysfs中的/vm/compact_memory文件手動實現(xiàn)同步內(nèi)存碎片整理。 */ bool ignore_skip_hint; /* Scan blocks even if marked skip */ /* 本次內(nèi)存碎片整理是否隔離到了空閑頁框,會影響zone的空閑頁掃描起始位置 */ bool finished_update_free; /* True when the zone cached pfns are * no longer being updated */ /* 本次內(nèi)存碎片整理是否隔離到了可移動頁框,會影響zone的可移動頁掃描起始位置 */ bool finished_update_migrate; /* 申請內(nèi)存時需要的頁框的order值 */ int order; /* order a direct compactor needs */ const gfp_t gfp_mask; /* gfp mask of a direct compactor */ /* 掃描的管理區(qū) */ struct zone *zone; /* 保存結(jié)果,比如異步模式下是否因為需要阻塞而結(jié)束了本次內(nèi)存碎片整理 */ int contended; /* Signal need_sched() or lock * contention detected during * compaction */};

5、Node zone 掃描推遲

struct zone{ 。。。。。 unsigned int compact_considered; unsigned int compact_defer_shift; int compact_order_failed; 。。。。。。}

當(dāng)一個zone要進(jìn)行內(nèi)存碎片整理時,首先會判斷本次整理需不需要推遲,如果本次內(nèi)存碎片整理使用的order值小于zone內(nèi)存碎片整理失敗最大order值compact_order_failed時,不用進(jìn)行推遲,可以直接進(jìn)行內(nèi)存碎片整理;

當(dāng)order值大于zone內(nèi)存碎片整理失敗最大order值compact_order_failed,會增加內(nèi)存碎片整理推遲計數(shù)器compact_considered,如果內(nèi)存碎片整理推遲計數(shù)器compact_considered未達(dá)到內(nèi)存碎片整理推遲閥值defer_limit,則會跳過本次內(nèi)存碎片整理,如果達(dá)到了,那就需要進(jìn)行內(nèi)存碎片整理。

總結(jié):也就是當(dāng)order小于zone內(nèi)存碎片整理失敗最大order值時,不用進(jìn)行推遲,而order大于zone內(nèi)存碎片整理失敗最大order值時,才考慮是否進(jìn)行推遲,此時推遲就是continue掃描node當(dāng)中的下一個zone區(qū)域,這里并不是想下文一下設(shè)置zone SKIP標(biāo)志。

6、Pageblock skip

struct zone{ 。。。。。。 unsigned long compact_cached_free_pfn; /* pfn where async and sync compaction migration scanner should start */ unsigned long compact_cached_migrate_pfn[2];

。。。。。。}

3.2、源碼分析

內(nèi)存碎片整理移動發(fā)生條件:

內(nèi)存分配不足時觸發(fā)direct compact整理內(nèi)存

Kswapd內(nèi)存回收后喚醒kcompactd內(nèi)核線程執(zhí)行compact操作,獲取連續(xù)內(nèi)存

手動設(shè)置echo 1 》 /proc/sys/vm/compact_memory

分析的重點就放在內(nèi)存分配不足的情況,入口函數(shù)從try_to_compact_pages開始

對源碼詳細(xì)分析參見代碼:https://github.com/linuxzjs/linux-4.14

重點分析5個關(guān)鍵函數(shù):

1、compaction_suitable

/* 判斷該zone是否可以做內(nèi)存碎片壓縮整理 */enum compact_result compaction_suitable(struct zone *zone, int order, unsigned int alloc_flags, int classzone_idx){ enum compact_result ret; int fragindex; /* * 根據(jù)watermask判斷zone中離散的page是否滿足2^order的內(nèi)存分配請求。

如果滿足則繼續(xù)對zone進(jìn)行內(nèi)存的compact整理zone的內(nèi)存碎片 * 說明該zone時可以做內(nèi)存碎片的壓縮整理的。 */ ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,zone_page_state(zone, NR_FREE_PAGES));

/* 如果return返回值為COMPACT_CONTINUE,且order 》 PAGE_ALLOC_COSTLY_ORDER(3)則進(jìn)入一下判斷當(dāng)中 */ if (ret == COMPACT_CONTINUE && (order 》 PAGE_ALLOC_COSTLY_ORDER)) { /* * 為了確定zone區(qū)域是否執(zhí)行壓縮,找到所請求區(qū)域zone和順序的碎片系數(shù)。

* 如果碎片系數(shù)值返回-1000,則存在要分配的頁面,因此不需要壓縮。 * 在其他情況下,該值在0到500的范圍內(nèi),并且如果它小于sysctl_extfrag_threshold,則直接return COMPACT_NOT_SUITABLE_ZONE不執(zhí)行壓縮 */ fragindex = fragmentation_index(zone, order); if (fragindex 》= 0 && fragindex 《= sysctl_extfrag_threshold) ret = COMPACT_NOT_SUITABLE_ZONE; }。。。。。 return ret;}

由此可以知道,判斷是否執(zhí)行內(nèi)存的碎片整理,需要滿足以下三個條件:在__compaction_suitable當(dāng)中可以得出:

減去申請的頁面,空閑頁面數(shù)將低于水印值;或者雖然大于等于水印值,但是沒有一個足夠大的連續(xù)的空閑頁塊;

空閑頁面減去兩倍的申請頁面,高于水印值;在fragmentation_index中:

申請的order大于PAGE_ALLOC_COSTLY_ORDER時,計算碎片指數(shù)fragindex來判斷;

2、compact_finished

通過該函數(shù)判斷zone區(qū)域碎片整理compact是否完成

static enum compact_result __compact_finished(struct zone *zone,struct compact_control *cc){ unsigned int order; /* 獲取zone的移動類型 */const int migratetype = cc-》migratetype;。。。。。 /* Compaction run completes if the migrate and free scanner meet */ /* 當(dāng)cc-》free_pfn 《= cc-》migrate_pfn空閑掃描于可移動頁面掃描相遇則說明zone碎片掃描壓縮完成 */ if (compact_scanners_met(cc)) { /* Let the next compaction start anew. */ /* 重置壓縮掃描起始地址于結(jié)束地址的位置 */ reset_cached_positions(zone);

/* 如果是直接壓縮模式則設(shè)置compact_blockskip_flush = true,清除PG_migrate_skip的skip屬性 */ if (cc-》direct_compaction) zone-》compact_blockskip_flush = true; /* * 如果whole_zone = 1說明zone是從頭開始掃描,掃描zone整個區(qū)域 return COMPACT_COMPLETE,表示zone掃描完成 * 如果whole_zone = 0說明zone是從局部開始掃描的,也就是在zone的更新的free_page或者是migrate_page當(dāng)中掃描 * 也就是也就是局部的pageblock的掃描,return COMPACT_PARTIAL_SKIPPED表示跳過該pageblock,掃描下一個pageblock */ if (cc-》whole_zone)

return COMPACT_COMPLETE; else return COMPACT_PARTIAL_SKIPPED; } /* 執(zhí)行壓縮時,將返回COMPACT_CONTINUE以強制壓縮整個塊,這個于手動模式有關(guān) * echo 1》 /proc/sys/vm/compact_memory */ if (is_via_compact_memory(cc-》order)) return COMPACT_CONTINUE; /* 如果掃描完成,則進(jìn)入判斷當(dāng)中,做進(jìn)一步判斷驗證 */if (cc-》finishing_block) { /* 再次檢查遷移掃描程序與pageblock是否對齊,如果對齊則說明頁面壓縮已經(jīng)完成重置cc-》finishing_block = false * 如果沒有對齊則,并返回COMPACT_CONTINUE以繼續(xù)掃描進(jìn)行zone的頁面掃描壓縮操作 */ if (IS_ALIGNED(cc-》migrate_pfn, pageblock_nr_pages)) cc-》finishing_block = false; else return COMPACT_CONTINUE; }

/* Direct compactor: Is a suitable page free? */ /* * 從當(dāng)前order開始掃描,order -》 MAX_ORDER進(jìn)行, */ for (order = cc-》order; order 《 MAX_ORDER; order++) { /* 根據(jù)order獲取free_area */ struct free_area *area = &zone-》free_area[order]; bool can_steal;

/* Job done if page is free of the right migratetype */ /* 如果該area-》free_list[migratetype])不為NULL,不為空則COMPACT_SUCCESS壓縮掃描成功 */ if (!list_empty(&area-》free_list[migratetype])) return COMPACT_SUCCESS; /* 如果定義了CONFIG_CMA如果移動類型為MIGRATE_MOVABLE可移動類型,且area-》free_list[MIGRATE_CMA])不為空則return COMPACT_SUCCESS */#ifdef CONFIG_CMA /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ if (migratetype == MIGRATE_MOVABLE && !list_empty(&area-》free_list[MIGRATE_CMA])) return COMPACT_SUCCESS;#endif /* 如果area-》free_list[migratetype]以及area-》free_list[MIGRATE_CMA])均為空則取對應(yīng)的migratetype的fallback當(dāng)中尋找合適可用的page * 判斷是否能夠完成頁面的壓縮。 */ if (find_suitable_fallback(area, order, migratetype, true, &can_steal) != -1) {

/* movable pages are OK in any pageblock */ /* 如果可移動類型為MIGRATE_MOVABLE則直接return COMPACT_SUCESS * 說明只要是可以移動的page都可用作頁面壓縮功能。 */ if (migratetype == MIGRATE_MOVABLE) return COMPACT_SUCCESS;

/* 如果正在執(zhí)行aync異步壓縮,或者如果遷移掃描程序已完成一頁代碼塊,則返回COMPACT_SUCCESS */ if (cc-》mode == MIGRATE_ASYNC || IS_ALIGNED(cc-》migrate_pfn, pageblock_nr_pages)) { return COMPACT_SUCCESS; } /* 如果fallback當(dāng)中沒有找到合適可用的page則設(shè)置cc-》finishing_block = true;return COMPACT_CONTINUE zone還需要繼續(xù)掃描, * skip到下一個pageblock或者是下一個zone */ cc-》finishing_block = true; return COMPACT_CONTINUE; } } /* 如果從order -》 max_order都沒有找到可用的page用作直接的頁面遷移壓縮則return COMPACT_NO_SUITABLE_PAGE表明沒有可用的頁面用于壓縮 */ return COMPACT_NO_SUITABLE_PAGE;}

3、isolate_migratepages

在zone當(dāng)中以pageblock為單位,掃描找到migratepage可移動頁,并將page添加struct compact_control *cc的migratepages鏈表當(dāng)中,便于后邊做頁面內(nèi)容的拷貝移動。其實隔離的作用就是將可移動頁面拿出來,單獨存放,與之前的pageblock分開

4、isolate_freepages

freepages的過程與migratepages的過程基本上是完全一致的,隔離結(jié)束的條件基本上也是一致的。

不同點就是freepage在找到pageblock的page進(jìn)行isolate隔離操作前會判斷這個page是如何組成的,是一個復(fù)合page還是非復(fù)合頁,如果不是要獲取這個page的order。

如果該page是由2^order個單獨的page組合起來的還要將這個page拆分成單獨的page也就是order = 0的這種情況,然后將單獨的page移動到freepages鏈表上,并設(shè)置page新的類型為MIGRATE_MOVABLE供后續(xù)使用。

5、migrate_pages

當(dāng)完成freepages、migratepages完成隔離后就調(diào)migrate_pages完成兩個鏈表的頁面遷移。

err = migrate_pages(&cc-》migratepages, compaction_alloc,

compaction_free, (unsigned long)cc, cc-》mode,

MR_COMPACTION);

compact_alloc函數(shù),從zone區(qū)域當(dāng)中掃描freepages并提填充到cc-》freepages鏈表當(dāng)中,再從cc-》freepages鏈表中取出一個空閑頁

static struct page *compaction_alloc(struct page *migratepage, unsigned long data, int **result){ struct compact_control *cc = (struct compact_control *)data; struct page *freepage;

/* * Isolate free pages if necessary, and if we are not aborting due to * contention. */ /* 如果cc中的空閑頁框鏈表為空 */ if (list_empty(&cc-》freepages)) { if (!cc-》contended) isolate_freepages(cc);/* 從cc-》free_pfn開始向前獲取空閑頁 */

if (list_empty(&cc-》freepages)) return NULL; } /* 從cc-》freepages鏈表取出一個空閑的freepages */ freepage = list_entry(cc-》freepages.next, struct page, lru); /* 將該page從lru鏈表當(dāng)中刪除 */ list_del(&freepage-》lru); cc-》nr_freepages--; /* 返回空閑頁框 */ return freepage;}static void compaction_free(struct page *page, unsigned long data){ struct compact_control *cc = (struct compact_control *)data;

list_add(&page-》lru, &cc-》freepages); cc-》nr_freepages++;}

這里先避開PageHuge不談,migrate_pages通過調(diào)用unmap_and_move、__unmap_and_move、move_to_new_page、try_to_unmap完成頁面最終的整理工作。這里面涉及的rmap反向映射這里不再展開。

memory compaction總結(jié)

分析過reclaim內(nèi)存回收代碼就會發(fā)現(xiàn),在內(nèi)存回收當(dāng)中同樣會wakeup_kcompactd觸發(fā)compaction碎片整理機制,在kswpad異步內(nèi)存回收當(dāng)中存在同樣的操作。

同時與kswapd機制類似目前內(nèi)核在node節(jié)點當(dāng)中也引入了kcompactd線程機制,定時的休眠喚醒該內(nèi)核線程完成內(nèi)存碎片的整理,在新的patch當(dāng)中更是將kswapd與kcompactd結(jié)合起來共同完成內(nèi)存碎片的整理。內(nèi)存回收工作。

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • Memory
    +關(guān)注

    關(guān)注

    1

    文章

    77

    瀏覽量

    28975

原文標(biāo)題:memory compaction原理、實現(xiàn)與分析

文章出處:【微信號:LinuxDev,微信公眾號:Linux閱碼場】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    EEPROM存儲功能的實現(xiàn)方式

    EEPROM(Electrically Erasable Programmable Read-Only Memory,電可擦可編程只讀存儲器)的存儲功能實現(xiàn)主要依賴于其獨特的浮柵晶體管結(jié)構(gòu)和工作原理。
    的頭像 發(fā)表于 09-05 12:34 ?554次閱讀

    stm32l476 QSPI如何退出 Memory_Mapped MODE?

    下將數(shù)據(jù)寫入外部QSPI的RAM中。 然后再將QUADSPI切換到QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED模式,將數(shù)據(jù)發(fā)送出去。 現(xiàn)在功能已經(jīng)實現(xiàn)。但是要進(jìn)行下一
    發(fā)表于 04-10 07:12

    羅徹斯特攜手Intelligent Memory提供傳統(tǒng)DRAM和NAND存儲解決方案

    羅徹斯特電子與Intelligent Memory攜手合作,確保為工業(yè)應(yīng)用和嵌入式應(yīng)用提供傳統(tǒng)和成熟的DRAM和NAND存儲解決方案。
    的頭像 發(fā)表于 03-27 09:59 ?347次閱讀

    CW32L052單片機支持DMA實現(xiàn)高速數(shù)據(jù)傳輸

    CW32L052支持DMA(Direct Memory Access),即直接內(nèi)存訪問,無需CPU干預(yù),實現(xiàn)高速數(shù)據(jù)傳輸。
    的頭像 發(fā)表于 02-27 11:36 ?918次閱讀

    超低功耗液晶顯示屏-無需背光陽光下可視SHARP Memory LCD選型表

    超低功耗液晶顯示屏-無需背光陽光下可視SHARP Memory LCD選型表
    的頭像 發(fā)表于 01-09 11:02 ?2438次閱讀
    超低功耗液晶顯示屏-無需背光陽光下可視SHARP <b class='flag-5'>Memory</b> LCD選型表

    基于工業(yè)物聯(lián)網(wǎng)的設(shè)備產(chǎn)能監(jiān)控與分析系統(tǒng)如何實現(xiàn)

    和實時監(jiān)控,并對數(shù)據(jù)進(jìn)行可視化展示與分析。 對于老舊設(shè)備可以通過PLC自動化改造實現(xiàn)與新設(shè)備的兼容。對此,物通博聯(lián)提供PLC的狀態(tài)監(jiān)控和產(chǎn)能數(shù)據(jù)的采集,實現(xiàn)對設(shè)備、工藝、產(chǎn)線等方面的數(shù)據(jù)可視化
    的頭像 發(fā)表于 12-25 14:00 ?361次閱讀
    基于工業(yè)物聯(lián)網(wǎng)的設(shè)備產(chǎn)能監(jiān)控與<b class='flag-5'>分析</b>系統(tǒng)如何<b class='flag-5'>實現(xiàn)</b>

    jvm的dump太大了怎么分析

    文件需要耗費大量的時間和計算資源。 然而,這并不意味著我們無法分析和利用JVM dump文件。以下是一些方法和技巧,可幫助我們有效地分析大型JVM dump文件。 使用工具:首先,我們可以使用一些專門用于分析JVM dump文件
    的頭像 發(fā)表于 12-05 11:01 ?2191次閱讀

    3D-IC 設(shè)計之 Memory-on-Logic 堆疊實現(xiàn)流程

    3D-IC 設(shè)計之 Memory-on-Logic 堆疊實現(xiàn)流程
    的頭像 發(fā)表于 12-01 16:53 ?638次閱讀
    3D-IC 設(shè)計之 <b class='flag-5'>Memory</b>-on-Logic 堆疊<b class='flag-5'>實現(xiàn)</b>流程

    EC SRAM映射到CPU Memory空間的共享內(nèi)存設(shè)計

    ShareMemory,顧名思義就是共享內(nèi)存。這個概念在很多計算機系統(tǒng)中都存在,本文特指 EC SRAM 映射到 CPU Memory 空間的共享內(nèi)存設(shè)計。
    的頭像 發(fā)表于 11-18 15:11 ?1334次閱讀
    EC SRAM映射到CPU <b class='flag-5'>Memory</b>空間的共享內(nèi)存設(shè)計

    Distributed Memory Generator IP核簡介

    Distributed Memory Generator IP 核采用 LUT RAM 資源創(chuàng)建各種不同的存儲器結(jié)構(gòu)。IP可用來創(chuàng)建只讀存儲器 (ROM)、單端口隨機存取存儲器 (RAM) 和簡單雙
    的頭像 發(fā)表于 11-17 17:00 ?1703次閱讀
    Distributed <b class='flag-5'>Memory</b> Generator IP核簡介

    Xilinx FPGA IP之Block Memory Generator AXI接口說明

    之前的文章對Block Memory Generator的原生接口做了說明和仿真,本文對AXI接口進(jìn)行說明。
    的頭像 發(fā)表于 11-14 18:25 ?1592次閱讀
    Xilinx FPGA IP之Block <b class='flag-5'>Memory</b> Generator AXI接口說明

    Xilinx FPGA IP之Block Memory Generator功能概述

    Xilinx Block Memory Generator(BMG)是一個先進(jìn)的內(nèi)存構(gòu)造器,它使用Xilinx fpga中的嵌入式塊RAM資源生成面積和 性能優(yōu)化的內(nèi)存。
    的頭像 發(fā)表于 11-14 17:49 ?2268次閱讀
    Xilinx FPGA IP之Block <b class='flag-5'>Memory</b> Generator功能概述

    實現(xiàn)IPTV成功部署的關(guān)鍵技術(shù)分析

    電子發(fā)燒友網(wǎng)站提供《實現(xiàn)IPTV成功部署的關(guān)鍵技術(shù)分析.doc》資料免費下載
    發(fā)表于 11-10 14:42 ?0次下載
    <b class='flag-5'>實現(xiàn)</b>IPTV成功部署的關(guān)鍵技術(shù)<b class='flag-5'>分析</b>

    理解i.MX RT中FlexSPI外設(shè)lookupTable里配置訪問行列混合尋址Memory的參數(shù)值

    理解i.MX RT中FlexSPI外設(shè)lookupTable里配置訪問行列混合尋址Memory的參數(shù)值
    的頭像 發(fā)表于 10-30 17:23 ?442次閱讀
    理解i.MX RT中FlexSPI外設(shè)lookupTable里配置訪問行列混合尋址<b class='flag-5'>Memory</b>的參數(shù)值

    基于BlueZ協(xié)議棧的藍(lán)牙語音接入系統(tǒng)實現(xiàn)與性能分析

    電子發(fā)燒友網(wǎng)站提供《基于BlueZ協(xié)議棧的藍(lán)牙語音接入系統(tǒng)實現(xiàn)與性能分析.pdf》資料免費下載
    發(fā)表于 10-30 11:25 ?0次下載
    基于BlueZ協(xié)議棧的藍(lán)牙語音接入系統(tǒng)<b class='flag-5'>實現(xiàn)</b>與性能<b class='flag-5'>分析</b>