0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

樸素貝葉斯分類算法并實(shí)現(xiàn)中文數(shù)據(jù)集的輿情分析案例

電子工程師 ? 來源:未知 ? 作者:李倩 ? 2018-10-23 09:27 ? 次閱讀

本文主要講述樸素貝葉斯分類算法并實(shí)現(xiàn)中文數(shù)據(jù)集的輿情分析案例,希望這篇文章對大家有所幫助,提供些思路。內(nèi)容包括:

1.樸素貝葉斯數(shù)學(xué)原理知識

2.naive_bayes用法及簡單案例

3.中文文本數(shù)據(jù)集預(yù)處理

4.樸素貝葉斯中文文本輿情分析

本篇文章為基礎(chǔ)性文章,希望對你有所幫助,如果文章中存在錯誤或不足之處,還請海涵。同時(shí),推薦大家閱讀我以前的文章了解基礎(chǔ)知識。

▌一. 樸素貝葉斯數(shù)學(xué)原理知識

該基礎(chǔ)知識部分引用文章"機(jī)器學(xué)習(xí)之樸素貝葉斯(NB)分類算法與Python實(shí)現(xiàn)"(https://blog.csdn.net/moxigandashu/article/details/71480251),也強(qiáng)烈推薦大家閱讀博主moxigandashu的文章,寫得很好。同時(shí)作者也結(jié)合概率論講解,提升下自己較差的數(shù)學(xué)。

樸素貝葉斯(Naive Bayesian)是基于貝葉斯定理和特征條件獨(dú)立假設(shè)的分類方法,它通過特征計(jì)算分類的概率,選取概率大的情況,是基于概率論的一種機(jī)器學(xué)習(xí)分類(監(jiān)督學(xué)習(xí))方法,被廣泛應(yīng)用于情感分類領(lǐng)域的分類器。

下面簡單回顧下概率論知識:

1.什么是基于概率論的方法?

通過概率來衡量事件發(fā)生的可能性。概率論和統(tǒng)計(jì)學(xué)是兩個(gè)相反的概念,統(tǒng)計(jì)學(xué)是抽取部分樣本統(tǒng)計(jì)來估算總體情況,而概率論是通過總體情況來估計(jì)單個(gè)事件或部分事情的發(fā)生情況。概率論需要已知數(shù)據(jù)去預(yù)測未知的事件。

例如,我們看到天氣烏云密布,電閃雷鳴并陣陣狂風(fēng),在這樣的天氣特征(F)下,我們推斷下雨的概率比不下雨的概率大,也就是p(下雨)>p(不下雨),所以認(rèn)為待會兒會下雨,這個(gè)從經(jīng)驗(yàn)上看對概率進(jìn)行判斷。而氣象局通過多年長期積累的數(shù)據(jù),經(jīng)過計(jì)算,今天下雨的概率p(下雨)=85%、p(不下雨)=15%,同樣的 p(下雨)>p(不下雨),因此今天的天氣預(yù)報(bào)肯定預(yù)報(bào)下雨。這是通過一定的方法計(jì)算概率從而對下雨事件進(jìn)行判斷。

2.條件概率

若Ω是全集,A、B是其中的事件(子集),P表示事件發(fā)生的概率,則條件概率表示某個(gè)事件發(fā)生時(shí)另一個(gè)事件發(fā)生的概率。假設(shè)事件B發(fā)生后事件A發(fā)生的概率為:

設(shè)P(A)>0,則有 P(AB) = P(B|A)P(A) = P(A|B)P(B)。

設(shè)A、B、C為事件,且P(AB)>0,則有 P(ABC) = P(A)P(B|A)P(C|AB)。

現(xiàn)在A和B是兩個(gè)相互獨(dú)立的事件,其相交概率為 P(A∩B) = P(A)P(B)。

3.全概率公式

設(shè)Ω為試驗(yàn)E的樣本空間,A為E的事件,B1、B2、....、Bn為Ω的一個(gè)劃分,且P(Bi)>0,其中i=1,2,...,n,則:

P(A) = P(AB1)+P(AB2)+...+P(ABn)

= P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|Bn)P(Bn)

全概率公式主要用途在于它可以將一個(gè)復(fù)雜的概率計(jì)算問題,分解為若干個(gè)簡單事件的概率計(jì)算問題,最后應(yīng)用概率的可加性求出最終結(jié)果。

示例:有一批同一型號的產(chǎn)品,已知其中由一廠生成的占30%,二廠生成的占50%,三長生成的占20%,又知這三個(gè)廠的產(chǎn)品次品概率分別為2%、1%、1%,問這批產(chǎn)品中任取一件是次品的概率是多少?

參考百度文庫資料

https://wenku.baidu.com/view/05d0e30e856a561253d36fdb.html

4.貝葉斯公式

設(shè)Ω為試驗(yàn)E的樣本空間,A為E的事件,如果有k個(gè)互斥且有窮個(gè)事件,即B1、B2、....、Bk為Ω的一個(gè)劃分,且P(B1)+P(B2)+...+P(Bk)=1,P(Bi)>0(i=1,2,...,k),則:

P(A):事件A發(fā)生的概率;

P(A∩B):事件A和事件B同時(shí)發(fā)生的概率;

P(A|B):事件A在時(shí)間B發(fā)生的條件下發(fā)生的概率;

意義:現(xiàn)在已知時(shí)間A確實(shí)已經(jīng)發(fā)生,若要估計(jì)它是由原因Bi所導(dǎo)致的概率,則可用Bayes公式求出。

5.先驗(yàn)概率和后驗(yàn)概率

先驗(yàn)概率是由以往的數(shù)據(jù)分析得到的概率,泛指一類事物發(fā)生的概率,根據(jù)歷史資料或主觀判斷未經(jīng)證實(shí)所確定的概率。后驗(yàn)概率而是在得到信息之后再重新加以修正的概率,是某個(gè)特定條件下一個(gè)具體事物發(fā)生的概率。

6.樸素貝葉斯分類

貝葉斯分類器通過預(yù)測一個(gè)對象屬于某個(gè)類別的概率,再預(yù)測其類別,是基于貝葉斯定理而構(gòu)成出來的。在處理大規(guī)模數(shù)據(jù)集時(shí),貝葉斯分類器表現(xiàn)出較高的分類準(zhǔn)確性。

假設(shè)存在兩種分類:

1) 如果p1(x,y)>p2(x,y),那么分入類別1

2) 如果p1(x,y)

引入貝葉斯定理即為:

其中,x、y表示特征變量,ci表示分類,p(ci|x,y)表示在特征為x,y的情況下分入類別ci的概率,因此,結(jié)合條件概率和貝葉斯定理有:

1) 如果p(c1|x,y)>p(c2,|x,y),那么分類應(yīng)當(dāng)屬于類別c1

2) 如果p(c1|x,y)

貝葉斯定理最大的好處是可以用已知的概率去計(jì)算未知的概率,而如果僅僅是為了比較p(ci|x,y)和p(cj|x,y)的大小,只需要已知兩個(gè)概率即可,分母相同,比較p(x,y|ci)p(ci)和p(x,y|cj)p(cj)即可。

7.示例講解

假設(shè)存在14天的天氣情況和是否能打網(wǎng)球,包括天氣、氣溫、濕度、風(fēng)等,現(xiàn)在給出新的一天天氣情況,需要判斷我們這一天可以打網(wǎng)球嗎?首先統(tǒng)計(jì)出各種天氣情況下打網(wǎng)球的概率,如下圖所示。

接下來是分析過程,其中包括打網(wǎng)球yse和不打網(wǎng)球no的計(jì)算方法。

最后計(jì)算結(jié)果如下,不去打網(wǎng)球概率為79.5%。

8.優(yōu)缺點(diǎn)

監(jiān)督學(xué)習(xí),需要確定分類的目標(biāo)

對缺失數(shù)據(jù)不敏感,在數(shù)據(jù)較少的情況下依然可以使用該方法

可以處理多個(gè)類別 的分類問題

適用于標(biāo)稱型數(shù)據(jù)

對輸入數(shù)據(jù)的形勢比較敏感

由于用先驗(yàn)數(shù)據(jù)去預(yù)測分類,因此存在誤差

▌二. naive_bayes用法及簡單案例

scikit-learn機(jī)器學(xué)習(xí)包提供了3個(gè)樸素貝葉斯分類算法:

GaussianNB(高斯樸素貝葉斯)

MultinomialNB(多項(xiàng)式樸素貝葉斯)

BernoulliNB(伯努利樸素貝葉斯)

1.高斯樸素貝葉斯

調(diào)用方法為:sklearn.naive_bayes.GaussianNB(priors=None)。

下面隨機(jī)生成六個(gè)坐標(biāo)點(diǎn),其中x坐標(biāo)和y坐標(biāo)同為正數(shù)時(shí)對應(yīng)類標(biāo)為2,x坐標(biāo)和y坐標(biāo)同為負(fù)數(shù)時(shí)對應(yīng)類標(biāo)為1。通過高斯樸素貝葉斯分類分析的代碼如下:

1#-*-coding:utf-8-*- 2importnumpyasnp 3fromsklearn.naive_bayesimportGaussianNB 4X=np.array([[-1,-1],[-2,-1],[-3,-2],[1,1],[2,1],[3,2]]) 5Y=np.array([1,1,1,2,2,2]) 6clf=GaussianNB() 7clf.fit(X,Y) 8pre=clf.predict(X) 9printu"數(shù)據(jù)集預(yù)測結(jié)果:",pre10printclf.predict([[-0.8,-1]])1112clf_pf=GaussianNB()13clf_pf.partial_fit(X,Y,np.unique(Y))#增加一部分樣本14printclf_pf.predict([[-0.8,-1]])

輸出如下圖所示,可以看到[-0.8, -1]預(yù)測結(jié)果為1類,即x坐標(biāo)和y坐標(biāo)同為負(fù)數(shù)。

2.多項(xiàng)式樸素貝葉斯

多項(xiàng)式樸素貝葉斯:sklearn.naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)主要用于離散特征分類,例如文本分類單詞統(tǒng)計(jì),以出現(xiàn)的次數(shù)作為特征值。

參數(shù)說明:alpha為可選項(xiàng),默認(rèn)1.0,添加拉普拉修/Lidstone平滑參數(shù);fit_prior默認(rèn)True,表示是否學(xué)習(xí)先驗(yàn)概率,參數(shù)為False表示所有類標(biāo)記具有相同的先驗(yàn)概率;class_prior類似數(shù)組,數(shù)組大小為(n_classes,),默認(rèn)None,類先驗(yàn)概率。

3.伯努利樸素貝葉斯

伯努利樸素貝葉斯:sklearn.naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True,class_prior=None)。類似于多項(xiàng)式樸素貝葉斯,也主要用于離散特征分類,和MultinomialNB的區(qū)別是:MultinomialNB以出現(xiàn)的次數(shù)為特征值,BernoulliNB為二進(jìn)制或布爾型特性

下面是樸素貝葉斯算法常見的屬性和方法。

1) class_prior_屬性

觀察各類標(biāo)記對應(yīng)的先驗(yàn)概率,主要是class_prior_屬性,返回?cái)?shù)組。代碼如下:

1printclf.class_prior_2#[0.50.5]

2) class_count_屬性

獲取各類標(biāo)記對應(yīng)的訓(xùn)練樣本數(shù),代碼如下:

1printclf.class_count_2#[3.3.]

3) theta_屬性

獲取各個(gè)類標(biāo)記在各個(gè)特征上的均值,代碼如下:

1printclf.theta_2#[[-2.-1.33333333]3#[2.1.33333333]]

4) sigma_屬性

獲取各個(gè)類標(biāo)記在各個(gè)特征上的方差,代碼如下:

1printclf.theta_2#[[-2.-1.33333333]3#[2.1.33333333]]

5) fit(X, y, sample_weight=None)

訓(xùn)練樣本,X表示特征向量,y類標(biāo)記,sample_weight表各樣本權(quán)重?cái)?shù)組。

1#設(shè)置樣本不同的權(quán)重2clf.fit(X,Y,np.array([0.05,0.05,0.1,0.1,0.1,0.2,0.2,0.2]))3printclf4printclf.theta_5printclf.sigma_

輸出結(jié)果如下所示:

1GaussianNB()2[[-2.25-1.5]3[2.251.5]]4[[0.68750.25]5[0.68750.25]]

6) partial_fit(X, y, classes=None, sample_weight=None)

增量式訓(xùn)練,當(dāng)訓(xùn)練數(shù)據(jù)集數(shù)據(jù)量非常大,不能一次性全部載入內(nèi)存時(shí),可以將數(shù)據(jù)集劃分若干份,重復(fù)調(diào)用partial_fit在線學(xué)習(xí)模型參數(shù),在第一次調(diào)用partial_fit函數(shù)時(shí),必須制定classes參數(shù),在隨后的調(diào)用可以忽略。

1importnumpyasnp 2fromsklearn.naive_bayesimportGaussianNB 3X=np.array([[-1,-1],[-2,-2],[-3,-3],[-4,-4],[-5,-5], 4[1,1],[2,2],[3,3]]) 5y=np.array([1,1,1,1,1,2,2,2]) 6clf=GaussianNB() 7clf.partial_fit(X,y,classes=[1,2], 8sample_weight=np.array([0.05,0.05,0.1,0.1,0.1,0.2,0.2,0.2])) 9printclf.class_prior_10printclf.predict([[-6,-6],[4,5],[2,5]])11printclf.predict_proba([[-6,-6],[4,5],[2,5]])

輸出結(jié)果如下所示:

1[0.40.6]2[122]3[[1.00000000e+004.21207358e-40]4[1.12585521e-121.00000000e+00]5[8.73474886e-111.00000000e+00]]

可以看到點(diǎn)[-6,-6]預(yù)測結(jié)果為1,[4,5]預(yù)測結(jié)果為2,[2,5]預(yù)測結(jié)果為2。同時(shí),predict_proba(X)輸出測試樣本在各個(gè)類標(biāo)記預(yù)測概率值。

7) score(X, y, sample_weight=None)

返回測試樣本映射到指定類標(biāo)記上的得分或準(zhǔn)確率。

1pre=clf.predict([[-6,-6],[4,5],[2,5]])2printclf.score([[-6,-6],[4,5],[2,5]],pre)3#1.0

最后給出一個(gè)高斯樸素貝葉斯算法分析小麥數(shù)據(jù)集案例,代碼如下:

1#-*-coding:utf-8-*- 2#第一部分載入數(shù)據(jù)集 3importpandasaspd 4X=pd.read_csv("seed_x.csv") 5Y=pd.read_csv("seed_y.csv") 6printX 7printY 8 9#第二部分導(dǎo)入模型10fromsklearn.naive_bayesimportGaussianNB11clf=GaussianNB()12clf.fit(X,Y)13pre=clf.predict(X)14printu"數(shù)據(jù)集預(yù)測結(jié)果:",pre1516#第三部分降維處理17fromsklearn.decompositionimportPCA18pca=PCA(n_components=2)19newData=pca.fit_transform(X)20printnewData[:4]2122#第四部分繪制圖形23importmatplotlib.pyplotasplt24L1=[n[0]forninnewData]25L2=[n[1]forninnewData]26plt.scatter(L1,L2,c=pre,s=200)27plt.show()

輸出如下圖所示:

最后對數(shù)據(jù)集進(jìn)行評估,主要調(diào)用sklearn.metrics類中classification_report函數(shù)實(shí)現(xiàn)的,代碼如下:

1fromsklearn.metricsimportclassification_report2print(classification_report(Y,pre))

運(yùn)行結(jié)果如下所示,準(zhǔn)確率、召回率和F特征為91%。

補(bǔ)充下Sklearn機(jī)器學(xué)習(xí)包常用的擴(kuò)展類。

1#監(jiān)督學(xué)習(xí) 2sklearn.neighbors#近鄰算法 3sklearn.svm#支持向量機(jī) 4sklearn.kernel_ridge#核-嶺回歸 5sklearn.discriminant_analysis#判別分析 6sklearn.linear_model#廣義線性模型 7sklearn.ensemble#集成學(xué)習(xí) 8sklearn.tree#決策樹 9sklearn.naive_bayes#樸素貝葉斯10sklearn.cross_decomposition#交叉分解11sklearn.gaussian_process#高斯過程12sklearn.neural_network#神經(jīng)網(wǎng)絡(luò)13sklearn.calibration#概率校準(zhǔn)14sklearn.isotonic#保守回歸15sklearn.feature_selection#特征選擇16sklearn.multiclass#多類多標(biāo)簽算法1718#無監(jiān)督學(xué)習(xí)19sklearn.decomposition#矩陣因子分解sklearn.cluster#聚類20sklearn.manifold#流形學(xué)習(xí)21sklearn.mixture#高斯混合模型22sklearn.neural_network#無監(jiān)督神經(jīng)網(wǎng)絡(luò)23sklearn.covariance#協(xié)方差估計(jì)2425#數(shù)據(jù)變換26sklearn.feature_extraction#特征提取sklearn.feature_selection#特征選擇27sklearn.preprocessing#預(yù)處理28sklearn.random_projection#隨機(jī)投影29sklearn.kernel_approximation#核逼近

▌三. 中文文本數(shù)據(jù)集預(yù)處理

假設(shè)現(xiàn)在需要判斷一封郵件是不是垃圾郵件,其步驟如下:

數(shù)據(jù)集拆分成單詞,中文分詞技術(shù)

計(jì)算句子中總共多少單詞,確定詞向量大小

句子中的單詞轉(zhuǎn)換成向量,BagofWordsVec

計(jì)算P(Ci),P(Ci|w)=P(w|Ci)P(Ci)/P(w),表示w特征出現(xiàn)時(shí),該樣本被分為Ci類的條件概率

判斷P(w[i]C[0])和P(w[i]C[1])概率大小,兩個(gè)集合中概率高的為分類類標(biāo)

下面講解一個(gè)具體的實(shí)例。

1.數(shù)據(jù)集讀取

假設(shè)存在如下所示10條Python書籍訂單評價(jià)信息,每條評價(jià)信息對應(yīng)一個(gè)結(jié)果(好評和差評),如下圖所示:

數(shù)據(jù)存儲至CSV文件中,如下圖所示。

下面采用pandas擴(kuò)展包讀取數(shù)據(jù)集。代碼如下所示:

1#-*-coding:utf-8-*- 2importnumpyasnp 3importpandasaspd 4 5data=pd.read_csv("data.csv",encoding='gbk') 6printdata 7 8#取表中的第1列的所有值 9printu"獲取第一列內(nèi)容"10col=data.iloc[:,0]11#取表中所有值12arrs=col.values13forainarrs:14printa

輸出結(jié)果如下圖所示,同時(shí)可以通過data.iloc[:,0]獲取第一列的內(nèi)容。

2.中文分詞及過濾停用詞

接下來作者采用jieba工具進(jìn)行分詞,并定義了停用詞表,即:

stopwords = {}.fromkeys([',', '。', '!', '這', '我', '非常'])

完整代碼如下所示:

1#-*-coding:utf-8-*- 2importnumpyasnp 3importpandasaspd 4importjieba 5 6data=pd.read_csv("data.csv",encoding='gbk') 7printdata 8 9#取表中的第1列的所有值10printu"獲取第一列內(nèi)容"11col=data.iloc[:,0]12#取表中所有值13arrs=col.values14#去除停用詞15stopwords={}.fromkeys([',','。','!','這','我','非常'])1617printu" 中文分詞后結(jié)果:"18forainarrs:19#printa20seglist=jieba.cut(a,cut_all=False)#精確模式21final=''22forseginseglist:23seg=seg.encode('utf-8')24ifsegnotinstopwords:#不是停用詞的保留25final+=seg26seg_list=jieba.cut(final,cut_all=False)27output=''.join(list(seg_list))#空格拼接28printoutput

然后分詞后的數(shù)據(jù)如下所示,可以看到標(biāo)點(diǎn)符號及“這”、“我”等詞已經(jīng)過濾。

3.詞頻統(tǒng)計(jì)

接下來需要將分詞后的語句轉(zhuǎn)換為向量的形式,這里使用CountVectorizer實(shí)現(xiàn)轉(zhuǎn)換為詞頻。如果需要轉(zhuǎn)換為TF-IDF值可以使用TfidfTransformer類。詞頻統(tǒng)計(jì)完整代碼如下所示:

1#-*-coding:utf-8-*- 2importnumpyasnp 3importpandasaspd 4importjieba 5 6data=pd.read_csv("data.csv",encoding='gbk') 7printdata 8 9#取表中的第1列的所有值10printu"獲取第一列內(nèi)容"11col=data.iloc[:,0]12#取表中所有值13arrs=col.values14#去除停用詞15stopwords={}.fromkeys([',','。','!','這','我','非常'])1617printu" 中文分詞后結(jié)果:"18corpus=[]19forainarrs:20#printa21seglist=jieba.cut(a,cut_all=False)#精確模式22final=''23forseginseglist:24seg=seg.encode('utf-8')25ifsegnotinstopwords:#不是停用詞的保留26final+=seg27seg_list=jieba.cut(final,cut_all=False)28output=''.join(list(seg_list))#空格拼接29printoutput30corpus.append(output)3132#計(jì)算詞頻33fromsklearn.feature_extraction.textimportCountVectorizer34fromsklearn.feature_extraction.textimportTfidfTransformer3536vectorizer=CountVectorizer()#將文本中的詞語轉(zhuǎn)換為詞頻矩陣37X=vectorizer.fit_transform(corpus)#計(jì)算個(gè)詞語出現(xiàn)的次數(shù)38word=vectorizer.get_feature_names()#獲取詞袋中所有文本關(guān)鍵詞39forwinword:#查看詞頻結(jié)果40printw,41print''42printX.toarray()

輸出結(jié)果如下所示,包括特征詞及對應(yīng)的10行數(shù)據(jù)的向量,這就將中文文本數(shù)據(jù)集轉(zhuǎn)換為了數(shù)學(xué)向量的形式,接下來就是對應(yīng)的數(shù)據(jù)分析了。

如下所示得到一個(gè)詞頻矩陣,每行數(shù)據(jù)集對應(yīng)一個(gè)分類類標(biāo),可以預(yù)測新的文檔屬于哪一類。

TF-IDF相關(guān)知識推薦我的文章: [python] 使用scikit-learn工具計(jì)算文本TF-IDF值(https://blog.csdn.net/eastmount/article/details/50323063)

▌四. 樸素貝葉斯中文文本輿情分析

最后給出樸素貝葉斯分類算法分析中文文本數(shù)據(jù)集的完整代碼。

1#-*-coding:utf-8-*- 2importnumpyasnp 3importpandasaspd 4importjieba 5 6#http://blog.csdn.net/eastmount/article/details/50323063 7#http://blog.csdn.net/eastmount/article/details/50256163 8#http://blog.csdn.net/lsldd/article/details/41542107 910####################################11#第一步讀取數(shù)據(jù)及分詞12#13data=pd.read_csv("data.csv",encoding='gbk')14printdata1516#取表中的第1列的所有值17printu"獲取第一列內(nèi)容"18col=data.iloc[:,0]19#取表中所有值20arrs=col.values2122#去除停用詞23stopwords={}.fromkeys([',','。','!','這','我','非常'])2425printu" 中文分詞后結(jié)果:"26corpus=[]27forainarrs:28#printa29seglist=jieba.cut(a,cut_all=False)#精確模式30final=''31forseginseglist:32seg=seg.encode('utf-8')33ifsegnotinstopwords:#不是停用詞的保留34final+=seg35seg_list=jieba.cut(final,cut_all=False)36output=''.join(list(seg_list))#空格拼接37printoutput38corpus.append(output)3940####################################41#第二步計(jì)算詞頻42#43fromsklearn.feature_extraction.textimportCountVectorizer44fromsklearn.feature_extraction.textimportTfidfTransformer4546vectorizer=CountVectorizer()#將文本中的詞語轉(zhuǎn)換為詞頻矩陣47X=vectorizer.fit_transform(corpus)#計(jì)算個(gè)詞語出現(xiàn)的次數(shù)48word=vectorizer.get_feature_names()#獲取詞袋中所有文本關(guān)鍵詞49forwinword:#查看詞頻結(jié)果50printw,51print''52printX.toarray()535455####################################56#第三步數(shù)據(jù)分析57#58fromsklearn.naive_bayesimportMultinomialNB59fromsklearn.metricsimportprecision_recall_curve60fromsklearn.metricsimportclassification_report6162#使用前8行數(shù)據(jù)集進(jìn)行訓(xùn)練,最后兩行數(shù)據(jù)集用于預(yù)測63printu" 數(shù)據(jù)分析:"64X=X.toarray()65x_train=X[:8]66x_test=X[8:]67#1表示好評0表示差評68y_train=[1,1,0,0,1,0,0,1]69y_test=[1,0]7071#調(diào)用MultinomialNB分類器72clf=MultinomialNB().fit(x_train,y_train)73pre=clf.predict(x_test)74printu"預(yù)測結(jié)果:",pre75printu"真實(shí)結(jié)果:",y_test7677fromsklearn.metricsimportclassification_report78print(classification_report(y_test,pre))

輸出結(jié)果如下所示,可以看到預(yù)測的兩個(gè)值都是正確的。即“一本優(yōu)秀的書籍,值得讀者擁有。”預(yù)測結(jié)果為好評(類標(biāo)1),“很差,不建議買,準(zhǔn)備退貨?!苯Y(jié)果為差評(類標(biāo)0)。

1數(shù)據(jù)分析:2預(yù)測結(jié)果:[10]3真實(shí)結(jié)果:[1,0]4precisionrecallf1-scoresupport5601.001.001.001711.001.001.00189avg/total1.001.001.002

但存在一個(gè)問題,由于數(shù)據(jù)量較小不具備代表性,而真實(shí)分析中會使用海量數(shù)據(jù)進(jìn)行輿情分析,預(yù)測結(jié)果肯定頁不是100%的正確,但是需要讓實(shí)驗(yàn)結(jié)果盡可能的好。最后補(bǔ)充一段降維繪制圖形的代碼,如下:

1#降維繪制圖形 2fromsklearn.decompositionimportPCA 3pca=PCA(n_components=2) 4newData=pca.fit_transform(X) 5printnewData 6 7pre=clf.predict(X) 8Y=[1,1,0,0,1,0,0,1,1,0] 9importmatplotlib.pyplotasplt10L1=[n[0]forninnewData]11L2=[n[1]forninnewData]12plt.scatter(L1,L2,c=pre,s=200)13plt.show()

輸出結(jié)果如圖所示,預(yù)測結(jié)果和真實(shí)結(jié)果都是一樣的,即[1,1,0,0,1,0,0,1,1,0]。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1199

    瀏覽量

    24594
  • 貝葉斯分類器
    +關(guān)注

    關(guān)注

    0

    文章

    6

    瀏覽量

    2293

原文標(biāo)題:樸素貝葉斯分類器詳解及中文文本輿情分析(附代碼實(shí)踐)

文章出處:【微信號:rgznai100,微信公眾號:rgznai100】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    濾波和卡爾曼濾波的區(qū)別

    先驗(yàn)概率和觀測數(shù)據(jù)相結(jié)合,來估計(jì)系統(tǒng)的狀態(tài)。濾波的核心思想是:在給定觀測數(shù)據(jù)的情況下,系統(tǒng)狀態(tài)的后驗(yàn)概率可以通過
    的頭像 發(fā)表于 08-01 15:25 ?386次閱讀

    再次問鼎全球首富

    今日,亞馬遜創(chuàng)始人杰夫·再次榮登全球首富寶座,成功超越了法國奢侈品巨頭LVMH老板伯納德·阿爾諾。在全球富豪500強(qiáng)排名中,以驚人的2090億美元凈資產(chǎn)位列榜首。
    的頭像 發(fā)表于 06-12 17:36 ?594次閱讀

    咳嗽檢測深度神經(jīng)網(wǎng)絡(luò)算法

    哮喘、支氣管炎和百日咳發(fā)生時(shí)的咳嗽音頻信號的方法。在此,使用巴特沃高通濾波器進(jìn)行預(yù)處理,使用MFCC進(jìn)行特征提取。此外,使用咳嗽特征的訓(xùn)練數(shù)據(jù),使用改進(jìn)的CNN完成了咳嗽聲音的
    發(fā)表于 05-15 19:05

    K折交叉驗(yàn)證算法與訓(xùn)練

    K折交叉驗(yàn)證算法與訓(xùn)練
    的頭像 發(fā)表于 05-15 09:26 ?459次閱讀

    基于毫米波的人體跟蹤和識別算法

    了RadHAR,這是一種使用稀疏和非均勻點(diǎn)云執(zhí)行精確HAR的框架。RadHAR利用滑動時(shí)間窗口來累積毫米波雷達(dá)的點(diǎn)云,生成體素化表示,作為分類器的輸入。 我們在收集的具有5種不同活動的人類活動數(shù)據(jù)
    發(fā)表于 05-14 18:40

    Labview程序實(shí)現(xiàn)數(shù)據(jù)分類

    如圖所示,該EXCEL中C列、E列是移心圓坐標(biāo),F(xiàn)列是需要處理數(shù)據(jù)。 E列為重復(fù)坐標(biāo)值,最終實(shí)現(xiàn)為下圖所示 判定要求可為E列,起始點(diǎn)為0,結(jié)束點(diǎn)為一條線最后一個(gè)點(diǎn)的值,求大神指導(dǎo)程序如何自動分類,自動換行保存。
    發(fā)表于 03-18 17:07

    云手機(jī)的境外輿情監(jiān)控應(yīng)用——助力品牌公關(guān)

    在當(dāng)今數(shù)字化時(shí)代,社交媒體已成為品牌傳播和互動的主要平臺。隨之而來的是海量的信息涌入,品牌需要及時(shí)了解應(yīng)對海外社交媒體上的輿情變化。本文將介紹如何通過云手機(jī)進(jìn)行境外輿情監(jiān)控,更好地幫助企業(yè)公關(guān)及時(shí)作出決策。
    的頭像 發(fā)表于 03-04 16:23 ?483次閱讀

    亞馬遜云科技助力沐瞳應(yīng)用生成式AI技術(shù)打造卓越游戲體驗(yàn) 賦能業(yè)務(wù)決策

    業(yè)務(wù)決策。沐瞳旗下游戲產(chǎn)品《Mobile Legends: Bang Bang》(以下簡稱《MLBB》)基于亞馬遜云科技和其合作伙伴在生成式AI領(lǐng)域的創(chuàng)新技術(shù)與解決方案,顯著提升辱罵識別與輿情分析的響應(yīng)速度與準(zhǔn)確率,辱罵識別準(zhǔn)確率達(dá)到90%以上,大幅度提升了玩家的游戲體驗(yàn);輿情分
    發(fā)表于 02-22 11:20 ?201次閱讀
    亞馬遜云科技助力沐瞳應(yīng)用生成式AI技術(shù)打造卓越游戲體驗(yàn) 賦能業(yè)務(wù)決策

    亞馬遜云科技助力沐瞳應(yīng)用生成式AI技術(shù)打造卓越游戲體驗(yàn) 賦能業(yè)務(wù)決策

    決策。沐瞳旗下游戲產(chǎn)品《Mobile Legends: Bang Bang》(以下簡稱《MLBB》)基于亞馬遜云科技和其合作伙伴在生成式AI領(lǐng)域的創(chuàng)新技術(shù)與解決方案,顯著提升辱罵識別與輿情分析的響應(yīng)速度與準(zhǔn)確率,辱罵識別準(zhǔn)確率達(dá)到90%以上,大幅度提升了玩家的游戲體驗(yàn);輿情分析
    的頭像 發(fā)表于 02-22 09:25 ?378次閱讀

    本月再次出售亞馬遜股票,套現(xiàn)85億美元?

    美國證交會(SEC)公布的文件顯示,是在上周末開啟了本次股票出售行動,于周二結(jié)束。其間,總共出售 23.7 億美元估值的 14006906 股亞馬遜股票。
    的頭像 發(fā)表于 02-21 15:50 ?427次閱讀

    MS-COCO數(shù)據(jù)的可靠嗎?

    視覺數(shù)據(jù)通常用于分類、檢測和分割等任務(wù)的算法基準(zhǔn)測試或大型神經(jīng)網(wǎng)絡(luò)的預(yù)訓(xùn)練。然而,這存在一個(gè)問題,那就是實(shí)際的目標(biāo)并不總是與數(shù)據(jù)集中提供的
    的頭像 發(fā)表于 11-21 11:19 ?581次閱讀
    MS-COCO<b class='flag-5'>數(shù)據(jù)</b><b class='flag-5'>集</b>的可靠嗎?

    連續(xù)時(shí)間信號的傅里分析

    電子發(fā)燒友網(wǎng)站提供《連續(xù)時(shí)間信號的傅里分析.pdf》資料免費(fèi)下載
    發(fā)表于 11-18 15:25 ?0次下載

    優(yōu)化是干什么的(原理解讀)

    由于我們要優(yōu)化的這個(gè)函數(shù)計(jì)算量太大,一個(gè)自然的想法就是用一個(gè)簡單點(diǎn)的模型來近似f(x),這個(gè)替代原始函數(shù)的模型也叫做代理模型,優(yōu)化中的代理模型為高斯過程,假設(shè)我們對待優(yōu)化函數(shù)的先驗(yàn)(prior
    的頭像 發(fā)表于 11-14 17:34 ?973次閱讀
    <b class='flag-5'>貝</b><b class='flag-5'>葉</b><b class='flag-5'>斯</b>優(yōu)化是干什么的(原理解讀)

    基于機(jī)器學(xué)習(xí)的應(yīng)用系統(tǒng)指紋識別技術(shù)研究

    協(xié)議的信息收集爬蟲技術(shù)、基于字符串匹配的識別技術(shù)和目標(biāo)安全缺陷利用技術(shù),基于目標(biāo)指紋特征提出搭建了樸素模型,
    的頭像 發(fā)表于 11-03 11:50 ?1060次閱讀
    基于機(jī)器學(xué)習(xí)的應(yīng)用系統(tǒng)指紋識別技術(shù)研究

    深度學(xué)習(xí)介紹

    1 Introduction 基于深度學(xué)習(xí)的人工智能模型往往精于 “感知” 的任務(wù),然而光有感知是不夠的, “推理” 是更高階人工智能的重要組成部分。比方說醫(yī)生診斷,除了需要通過圖像和音頻等感知病人的癥狀,還應(yīng)該能夠推斷癥狀與表征的關(guān)系,推斷各種病癥的概率,也就是說,需要有“thinking”的這種能力。具體而言就是 識別條件依賴關(guān)系、因果推斷、邏輯推理、處理不確定性 等。 概率圖模型(PGM)能夠很好處理概率性推理問題,然而PGM的弊端在于難以
    的頭像 發(fā)表于 11-03 10:51 ?578次閱讀
    <b class='flag-5'>貝</b><b class='flag-5'>葉</b><b class='flag-5'>斯</b>深度學(xué)習(xí)介紹