電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>電源/新能源>電池技術(shù)>利用納米級結(jié)構(gòu)調(diào)控改善穩(wěn)定鋰金屬電池固體電解質(zhì)界面的均勻性

利用納米級結(jié)構(gòu)調(diào)控改善穩(wěn)定鋰金屬電池固體電解質(zhì)界面的均勻性

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

評論

查看更多

相關(guān)推薦

全固態(tài)電池界面問題為何一直未能有效解決

電解質(zhì)由液態(tài)換成固體之后,鋰電池體系由電極材料-電解液的固液界面向電極材料-固態(tài)電解質(zhì)的固固界面轉(zhuǎn)化。區(qū)別在于,固固之間無潤濕性,其界面的更易形成更高接觸電阻。
2018-04-06 09:17:5410499

金屬電池性能研究

金屬電池能量密度高、成本低,是大型儲能和動力電池領(lǐng)域的新興明星。鈉金屬的應用受到活性鈉金屬負極與電解液的副反應、不穩(wěn)定固體電解質(zhì)界面以及鈉離子分布不均引起的枝晶生長等問題的阻礙。
2022-09-22 10:56:091729

2016年十大鋰電池技術(shù)突破

則會給金屬電池帶來嚴重的安全隱患。 該研究團隊經(jīng)過多次嘗試后,他們將目光轉(zhuǎn)向了納米技術(shù)。研究小組對材料表面特殊浸潤進行深入研究后,首次提出了“親”這一概念,并利用表面“親化”處理的碳質(zhì)主體
2016-12-30 19:16:12

固體電解質(zhì)的物理性質(zhì)如何?

固態(tài)的離子導體。有些具有接近、甚至超過熔鹽的高的離子電導率和低的電導激活能,這些固體電解質(zhì)常稱為快離子導體(fast ion conductor;FIC)。
2019-09-17 09:10:54

電池的類型,你真的了解嗎?

。鋰離子電池鋰離子電池的正極由石墨制成,負極由金屬氧化物制成。鹽作為有機溶劑被用作電解質(zhì)。當電池連接到電路或負載時,鋰離子從負極遷移到正極。在下面的圖片中,除了材料外,鋰離子電池結(jié)構(gòu)與鎳鎘和鎳銨
2022-03-17 19:23:06

電解液——鋰電池的‘血液’

輸運能力越強,離子電導能力越高。鋰電池負極表面有叫固態(tài)電解質(zhì)界面(SEI)膜的保護薄層,其對負極循環(huán)穩(wěn)定性至關(guān)重要,也對電池安全有很大影響;而電解質(zhì)的組分決定SEI膜的性質(zhì),對電池循環(huán)穩(wěn)定性和安全
2018-08-07 18:47:23

電解液對電池容量衰減的影響

鋰離子電池電解質(zhì)界面的穩(wěn)定性對電池的高能量密度和長循環(huán)壽命至關(guān)重要。眾所周知,以碳酸酯基的電解質(zhì)在負極材料上被還原形成固體電解質(zhì)中間相(SEI),但它們在正極材料上可能發(fā)生的(電)化學反應我們知之甚少。詳情見附件。。。。。。
2021-04-07 17:29:11

電解質(zhì)型傾角傳感器在天線控制中的應用

被新材料、新原理、多功能、新結(jié)構(gòu)所取代,與數(shù)字技術(shù)、通信技術(shù)的結(jié)合越來越密切,朝著集成化、智能化和微型化方向發(fā)展。  圖一  2.傾斜傳感器原理  為了測知被測物體與標準水平面的傾斜角度,常常用到一種電解質(zhì)
2018-11-14 15:09:44

納米三氧化二鋁包覆鋰電池正極材料效果明顯

材料的結(jié)構(gòu)穩(wěn)定性。 作用二:另一方面如果材料直接與電解液接觸,強氧化性的Co4+將會與電解液發(fā)生反應從而導致容量損失。包覆納米三氧化二鋁(VK-L30D)后可避免LiCoO2與電解液直接接觸,減少容量損失,從而提高LiCoO2材料的電化學比容量,改善其循環(huán)性能。
2014-05-12 13:49:26

納米傳感器和納米級物聯(lián)網(wǎng)將對醫(yī)學產(chǎn)生的影響

納米傳感器和納米級物聯(lián)網(wǎng)將對醫(yī)學產(chǎn)生巨大影響讓開放式人工智能系統(tǒng)成為你的個人健康助理升級光遺傳技術(shù)照亮神經(jīng)學人體器官芯片技術(shù)為醫(yī)藥研究帶來了新的機遇器官芯片的工作原理
2021-02-01 06:43:21

納米級測量儀器:窺探微觀世界的利器

納米級測量中,由于物體尺寸的相對較小,傳統(tǒng)的測量儀器往往無法滿足精確的要求。而納米級測量儀器具備高精度、高分辨率和非破壞的特點,可以測量微小的尺寸。1、光學3D表面輪廓儀SuperViewW1光學3D
2023-10-11 14:37:46

納米級電接觸電阻測量的新技術(shù),不看肯定后悔

關(guān)于納米級電接觸電阻測量的新技術(shù)看完你就懂了
2021-04-09 06:43:22

二氧化錳電池有什么特點?

二氧化錳電池的反應機理不同于一般電池,在非水有機溶劑中,負極溶解下的鋰離子通過電解質(zhì)遷移進入到MnO2的晶格中,生成MnO2(Li+)。Mn由+4價還原為+3價,其晶體結(jié)構(gòu)不發(fā)生變化。
2020-03-10 09:00:32

空氣電池的研究進展和最新情況

的大力支持下,中國科學院長春應化所張新波研究員帶領(lǐng)的科研團隊通過抑制—空氣電池電解液分解,調(diào)控空氣電極固—液—氣三相界面以及優(yōu)化鋰—空二次電池體系與結(jié)構(gòu),成功將—空氣電池循環(huán)壽命從目前文獻報道的最長100
2016-01-13 16:04:23

關(guān)于新的納米級測量技術(shù)的簡要介紹

納米級電氣的特性是什么?
2021-05-12 06:22:56

各種納米粉體材料在電池行業(yè)中的應用介紹

穩(wěn)定納米氧化鋯(VK-R30D)粉體因具有較高的氧離子電導率和氧化還原氣氛中理想的穩(wěn)定性,作為一種理想的電解質(zhì),在固體氧化物燃料電池領(lǐng)域得到了廣泛應用。具有良好的市場應用前景及商業(yè)價值。1、納米氧化鋯
2017-07-05 15:09:04

對于鋰電池的開發(fā)將面臨這樣的挑戰(zhàn)

大。固態(tài)電池和業(yè)態(tài)電池在微觀上也是三層結(jié)構(gòu),只是把現(xiàn)在的隔膜電解液替換為固態(tài)電解質(zhì),這是典型的照片,沒有太本質(zhì)的區(qū)別,核心是有可能負極使用了金屬,在這種情況下,在正極這一側(cè),原來的液體可以充分浸潤正極
2017-01-17 09:37:14

我想自己測試電解質(zhì)

市場上有沒有一種兩極板分開的電容傳感器?我想自己測試電解質(zhì)
2013-03-09 10:57:02

電池電解質(zhì)性質(zhì)分為哪幾種

電池電解質(zhì)性質(zhì)分為:堿性電池、酸性電池、中性電池。一、干電池電池也稱一次電池,即電池中的反應物質(zhì)在進行一次電化學反應放...
2021-08-31 06:16:22

堿性燃料電池的原理是什么?

氫氧燃料電池有兩個燃料入口,氫及氧各由一個入口進入電池,中間則有一組多孔石墨電極,電解質(zhì)則位于碳陰極及碳陽極中央。氫氣經(jīng)由多孔碳陽極進入電極中央的氫氧化鉀電解質(zhì),在接觸后進行氧化,產(chǎn)生水及電子。
2019-10-22 09:11:55

磷酸燃料電池的原理是什么?

磷酸燃料電池(Phosphoric Acid Fuel Cell, PAFC)是以濃磷酸為電解質(zhì),以貴金屬催化的氣體擴散電極為正、負電極的中溫型燃料電池。可以在150~220℃工作。
2020-03-19 09:01:59

科普:空氣電池是什么?

  空氣電池是一種用作陽極,以空氣中的氧氣作為陰極反應物的電池?! 》烹娺^程:陽極的釋放電子后成為陽離子(Li+),Li+穿過電解質(zhì)材料,在陰極與氧氣、以及從外電路流過來的電子結(jié)合生成氧化鋰
2016-01-11 16:27:12

移動電源電芯類型有哪幾種?

、三元材料和磷酸鐵材料,負極為石墨,電池的工作原理也基本一致。它們的主要區(qū)別在于電解質(zhì)的不同, 液態(tài)鋰離子電池使用的是液體電解質(zhì), 而聚合物鋰離子電池則以固體聚合物電解質(zhì)來代替, 這種聚合物可以是“干態(tài)
2011-12-22 14:11:21

聚合物鋰電池的生產(chǎn)

聚合物鋰離子電池所用原材料主要有的氧化物、石墨、固態(tài)聚合物電解質(zhì)、金屬集流體、導電劑、黏結(jié)劑、鋁塑膜等。圖7-126是聚合物鋰離子電池的生產(chǎn)流程,一般是將電極活性物質(zhì)與溶劑、導電劑、黏結(jié)劑混合,經(jīng)
2013-05-10 11:34:11

聚蠕蟲狀聚電解質(zhì)刷的吸附

聚(2-乙烯基吡啶)蠕蟲狀聚電解質(zhì)刷的吸附 - 應用簡報
2019-10-24 13:04:55

薄膜鋰電池的研究進展

對LINIO2、LIMN2I4、LINIXCO1AXO2、V2O5也有較多的研究;固體電解質(zhì)膜方面以對LIPON膜的研究為主;陽極膜方面以對金屬替代物的研究為主,比如錫和氮化物、氧化物以及非晶硅膜,研究多集中在循環(huán)交通的提高。在薄膜鋰電池結(jié)構(gòu)方面,三維結(jié)構(gòu)將是今后研究的一個重要方向。
2011-03-11 15:44:52

解密:空氣電池

共同開發(fā)出了新構(gòu)造的大容量空氣電池。他們通過將電解液分成兩種來解決上述問題。在負極(金屬)一側(cè)使用有機電解液,在正極(空氣)一側(cè)使用水性電解液。在兩種電解液之間設置只有鋰離子穿過的固體電解質(zhì)膜,將兩者
2016-01-12 10:51:49

超全面鋰電材料常用表征技術(shù)及經(jīng)典應用舉例

對TEM原位電池實驗的裝置進行了改進,利用金屬Li上自然生產(chǎn)的氧化鋰作為電解質(zhì),代替了原先使用的離子液體,提高了實驗的穩(wěn)定性,更好地保護了電鏡腔體。擴展閱讀:學術(shù)干貨│原位透射電鏡在材料氣液相化學反應
2016-12-30 18:37:56

超級電容器的類型

電解質(zhì),有機溶劑如PC、ACN、GBL、THL等有機溶劑作為溶劑,電解質(zhì)在溶劑中接近飽和溶解度。 其他分類 1.液體電解質(zhì)超級電容器,多數(shù)超級電容器電解質(zhì)均為液態(tài)。 2.固體電解質(zhì)超級電容器,隨著鋰離子電池固態(tài)電解液的發(fā)展,應用于超級電容器的電解質(zhì)也對凝膠電解質(zhì)和PEO等固體電解質(zhì)進行研究。
2021-10-30 15:09:22

超級電容器的類型

電解質(zhì),有機溶劑如PC、ACN、GBL、THL等有機溶劑作為溶劑,電解質(zhì)在溶劑中接近飽和溶解度。 其他分類 1.液體電解質(zhì)超級電容器,多數(shù)超級電容器電解質(zhì)均為液態(tài)。 2.固體電解質(zhì)超級電容器,隨著鋰離子電池固態(tài)電解液的發(fā)展,應用于超級電容器的電解質(zhì)也對凝膠電解質(zhì)和PEO等固體電解質(zhì)進行研究。`
2013-03-22 16:06:11

超薄電解質(zhì)電容器問世 手機可迎袖珍化時代

)的材料構(gòu)成,該材料能存儲電能。而且,由于電離子可以在這些“多孔鎳氟化物薄膜”中自由通行,所以該設計完全可以起到傳統(tǒng)電池的放電作用。  美國萊斯大學的研究人員表示,該電解質(zhì)電容器擁有超級電容器般的優(yōu)良性
2014-09-24 16:51:23

超薄電解質(zhì)電容器問世 手機可迎袖珍化時代

/1021。據(jù)悉,這一電解質(zhì)電容器具備可彎曲、電池容量大等特點,因此托爾及其團隊相信這有可能是下一代電子設備的主要供電設計?! ⌒枰赋龅氖牵懊绹瘜W
2014-09-25 16:39:28

電池VS聚合物鋰電池,誰才是未來的主角?

很熱也不爆炸?! ?、導電  鋰電池的電導率保持一個穩(wěn)定的值,而不會受輔助材料質(zhì)量的影響?! 【酆衔?b class="flag-6" style="color: red">電池的固態(tài)電解質(zhì)離子電導率低,目前主要是加入了一些添加劑使其成為凝膠電解質(zhì),以改善電導率?! ?
2018-08-17 10:00:51

電池與太陽能電池一體化設計方案

的關(guān)鍵”。  吉奧馬科技(GEOMATEC)和巖手大學也開發(fā)出了利用濺射實現(xiàn)正負電極以及電解質(zhì)層層疊的全固體鋰離子充電電池。但特點與GS Caltex的電池不同。比如,“無需高溫處理工序,底板可使用樹脂
2011-04-19 09:39:50

電池與太陽能電池一體化設計方案

聚合物充電電池采用固體材料作為電池電解質(zhì)。由于完全不使用電解液,因此不會發(fā)生漏液現(xiàn)象,大幅降低了著火及爆炸的可能。另外大多數(shù)產(chǎn)品還具備膜厚僅數(shù)μ~100μm(不包括底板)、重量輕以及底板可彎曲的特點
2011-04-18 09:31:01

電池與鉛酸電池的不同之處

電池是一類由金屬合金為負極材料、使用非水電解質(zhì)溶液的電池,而鉛酸電池是一種電極主要由鉛及其氧化物制成,電解液是硫酸溶液的蓄電池。一、鋰電池1、基本介紹鋰電池(Lithium battery
2018-03-31 14:19:48

電池包的新機遇,回收再利用

,據(jù)小編了解,組成鋰離子電池的正極、負極、隔膜、電解質(zhì)等材料中含有大量的有價金屬。不同動力鋰電池正極材料中,所含的有價金屬成分不同,其中潛在價值最高的金屬包括鈷、、鎳等。例如,三元電池的平均含量
2018-08-16 09:25:07

電池種類以及材質(zhì)詳解

聚合物膠體電解質(zhì)。一、鈷酸(LiCoO2)鈷酸鋰電池結(jié)構(gòu)鈷酸就是大家所俗稱的液態(tài)鋰離子電池,常見的形態(tài)有18650和方塊形狀。18650電池就是直徑18毫米、高65毫米的圓柱體電池(摸樣就像5號電池
2014-07-02 08:28:33

鋰離子電池電解液超全面介紹 有何神秘之處?

。電解質(zhì)鹽在充電過程中的反應:電解質(zhì)鹽的一些理化參數(shù):二、電解液添加劑主要分類:成膜添加劑:優(yōu)良的SEI膜(固體電解質(zhì)薄膜)具有有機溶劑不容,允許鋰離子自由的進出電極而溶劑分子無法穿越,從而阻止溶劑
2017-02-22 11:59:05

鋰離子電池SEI膜的性能影響

鋰離子電池電池首次從放電過程中,電極材料與電解液在固液相界面上發(fā)生反應,形成一層覆蓋于電極材料表面的鈍化層。這種鈍化層是一種界面層,具有固體電解質(zhì)的特征,是電子絕緣體卻是鋰離子的優(yōu)良導體,鋰離子
2019-05-24 07:48:36

鋰離子電池的最新正極材料:摻錳鈮酸?

3V以上。負極采用金屬、電解質(zhì)鹽采用六氟化磷酸、電解質(zhì)的溶劑采用碳酸二乙酯和碳酸二甲酯時,在電流密度為10mA/g的條件下的質(zhì)量能量密度高達950Wh/kg。這是質(zhì)量能量密度為100
2016-01-19 14:06:07

固體電解質(zhì)傳感器在高溫研究中的應用

固體電解質(zhì)化學傳感器在高溫熱力學、動力學和火法冶金中的應用進行了總結(jié)和回顧.關(guān)鍵詞: 固定電解質(zhì); 化學傳感器; 濃差電池
2009-07-10 08:36:1028

固體電解質(zhì)化學定硫傳感器的實驗研究

采用氧化釔穩(wěn)定氧化鋯作為固體電解質(zhì),稀土硫氧化釔和氧化釔的混合物作為輔助電極組裝電化學定硫電池,定硫?qū)嶒灲Y(jié)果表明,該定硫傳感器所測電動勢信號較為穩(wěn)定,響應較快重現(xiàn)性
2009-07-10 15:35:2119

氧化鋯固體電解質(zhì)濃差電池的組裝及應用

氧化鋯固體電解質(zhì)濃差電池的組裝及應用 3.3.1 實驗目的   固體電解質(zhì)濃差電池是七十年代發(fā)展起來的一項技術(shù)。不僅廣泛用于金屬液的直接定氧,
2009-11-06 14:25:1364

日本開發(fā)固體電解質(zhì)新原理氫氣傳感器

日本開發(fā)固體電解質(zhì)新原理氫氣傳感器 日本郡士(GUNZE)開發(fā)出使用固體電解質(zhì)的新原理氫氣傳感器,并在國際氫燃料電池展上展出。與目前的接觸燃燒式氫氣傳感器
2008-03-22 14:38:121090

CA型固體電解質(zhì)鉭電容器

CA型固體電解質(zhì)鉭電容器CA 型固體電解質(zhì)鉭電容器為金屬外殼全密封結(jié)構(gòu),具有電氣性能穩(wěn)定、可靠性高、工作溫度范圍寬、使用壽命長等特點,適用于各種軍用及通信電子設
2009-08-21 17:45:371027

GCA型固體電解質(zhì)鉭電容器

GCA型固體電解質(zhì)鉭電容器 GCA 型固體電解質(zhì)鉭電容器為金屬外殼全密封結(jié)構(gòu),具有電性能穩(wěn)定、可靠性高、壽命長等特點,適用于有可靠性要求的軍用電子設備。其外形如
2009-08-21 17:45:50748

GCA型固體電解質(zhì)鉭電容器

GCA型固體電解質(zhì)鉭電容器 GCA 型固體電解質(zhì)鉭電容器為金屬外殼全密封結(jié)構(gòu),具有電性能穩(wěn)定、可靠性高、壽命長等特點,適用于有可靠性要求的軍用電子設備。其外形如
2009-08-21 17:46:15749

CAMM型小容量固體電解質(zhì)鉭電容器

CAMM型小容量固體電解質(zhì)鉭電容器 CAMM 型固體電解質(zhì)鉭電容器為金屬外殼、環(huán)氧樹脂封裝、軸向引出結(jié)構(gòu),具有電容量小、體積小、電性能穩(wěn)定、可靠性高及壽命長等特點,
2009-08-21 17:46:30643

CA32型大容量非固體電解質(zhì)鉭電容器

CA32型大容量非固體電解質(zhì)鉭電容器 CA32 型大容量非固體電解質(zhì)鈕電容器采用多芯結(jié)構(gòu),具有電容量大、性能穩(wěn)定可靠的特點,適用于直流或脈動電路,其外形如圖4-104 所示
2009-08-21 17:48:59978

電池內(nèi)的電解質(zhì)是什么?

電池內(nèi)的電解質(zhì)是什么 首先 同種反應物 用不同電解質(zhì) 進行反應是不一樣電解質(zhì) 他干什么用呢?舉個例子甲烷與氧氣 原電池酸性電
2009-10-20 12:08:18902

超晶格電解質(zhì)材料

超晶格電解質(zhì)材料 西班牙研發(fā)人員開發(fā)出一種可有效地提高燃料電池效率的超晶格電解質(zhì)材料,較當前的固體氧化物燃料電池可大大地降低
2009-11-10 14:54:55673

金屬鋰表面預處理和電解液添加劑對鋰電極表面的改性介紹

極進行表面改性;采用新型有機溶劑、離子液體、聚合物電解質(zhì)、玻璃態(tài)固體電解質(zhì)、塑晶固體電解質(zhì)電解質(zhì)體系提高界面相容性;改進金屬鋰電極的制備工藝,如制備金屬鋰粉末多孔電極和電沉積鋰電極、制備全固態(tài)薄膜鋰電池以及利用
2017-10-11 11:20:457

美國開發(fā)出一種新型陰極和電解質(zhì)系統(tǒng) 有望改善鋰離子電池

據(jù)最新一期的《自然·材料》報道,為了開發(fā)鋰基電池的替代品,減少對稀有金屬的依賴,美國佐治亞理工學院研究人員開發(fā)出一種有前景的新型陰極和電解質(zhì)系統(tǒng),用低成本的過渡金屬氟化物和固體聚合物電解質(zhì)代替昂貴的金屬和傳統(tǒng)的液體電解質(zhì),有望帶來更安全、更輕和更便宜的鋰離子電池。
2019-09-16 10:22:321152

納米電池組成_納米電池充放電原理

的正極,由鋁箔與電池正極連接,中間是聚合物的隔膜,它把正極與負極隔開,由納米石墨組成的電池負極,由銅箔與電池的負極連接。電池的上下端之間是電池電解質(zhì),電池金屬外殼密閉封裝。
2019-12-03 09:05:561201

NBL研究人員利用半固態(tài)電解質(zhì)消除電解液泄漏從而改善電池安全性能

安全問題一直以來都是阻礙鋰電池的工業(yè)使用的障礙,因為鋰電的高度易燃液體有機電解質(zhì)容易泄漏,而且還依賴于熱和機械不穩(wěn)定的電極分離器。雖然固態(tài)電解質(zhì)已經(jīng)顯示出改善電池安全性能的潛力,但它們的電極/電解質(zhì)經(jīng)常接觸不良而且離子電導率有限,導致了固態(tài)鋰電的性能低下。
2020-03-13 14:51:323466

新型固體材料可替代電池中的易燃液體電解質(zhì)

電池充放電過程中,鋰離子通過電解質(zhì)在正負極之間穿梭。大多數(shù)鋰離子電池使用的是液體電解質(zhì),如果電池被擊穿或短路,電解質(zhì)就會燃燒。與之相反,固體電解質(zhì)很少著火,而且可能更有效。
2020-09-25 10:21:10810

鋰離子電池電解質(zhì)的要求及對電池性能的影響

。 圖1 鋰離子電池電解質(zhì)的基本要求二、鋰離子電池電解質(zhì)的分類根據(jù)電解質(zhì)的存在狀態(tài)可將鋰電池電解質(zhì)分為液體電解質(zhì)、固體電解質(zhì)和固液復合電解質(zhì)。液體電解質(zhì)包括有機液體電解質(zhì)和室溫離子液體電解質(zhì)固體電解質(zhì)包括固體聚合物電解質(zhì)和無
2020-12-30 10:41:473413

納米電池基本組成_納米電池充放電原理

的正極,由鋁箔與電池正極連接,中間是聚合物的隔膜,它把正極與負極隔開,由納米石墨組成的電池負極,由銅箔與電池的負極連接。電池的上下端之間是電池電解質(zhì),電池金屬外殼密閉封裝。
2021-02-24 16:09:412231

中科院設計出一種用于柔性全固態(tài)鋰金屬電池固體聚合物電解質(zhì)

【研究背景】 全固態(tài)鋰金屬電池具有優(yōu)異的循環(huán)性能和倍率性能,是最有前途的下一代儲能設備之一。其中,固體聚合物電解質(zhì)由于其良好的靈活性、較低的成本和易于加工和放大等特性而被視為最有前景的全固態(tài)鋰電池
2021-05-26 11:35:363360

剖析穩(wěn)定金屬電池的長效固體電解質(zhì)界面

由鋰金屬陽極、酯基電解質(zhì)、富鎳Li[NixCoyMn1-x-y]O2(NCM)陰極組成的鋰電池已成為下一代儲能技術(shù)的潛在候選者。然而,尋找一種能高度兼容NCM陰極,同時在鋰金屬陽極表面形成穩(wěn)定固體
2021-06-04 15:25:052268

“分子橋”修飾提高鋰金屬負極/固態(tài)電解質(zhì)界面穩(wěn)定

作為固態(tài)鋰電池的重要組成部分,固態(tài)電解質(zhì)的理化性質(zhì)對固態(tài)鋰電池電化學性能的發(fā)揮至關(guān)重要。理想的固態(tài)電解質(zhì)材料應具有高的室溫離子電導率、高的氧化電位、高的機械強度,同時對正負電極具有良好的界面相容性。
2022-03-31 14:13:081813

鋰離子在含人工SEI薄膜的鋰金屬負極表面的電沉積行為

深入了解金屬鋰的電沉積行為對鋰金屬電池的實用化至關(guān)重要。長時間以來,學者們致力于探索抑制鋰離子在鋰金屬負極表面的均勻電沉積行為的方法,穩(wěn)定金屬電極/電解質(zhì)界面并提升全電池的循環(huán)性能。
2022-04-24 10:14:322148

固態(tài)鋰金屬電池中的電解質(zhì)-負極界面保護層

電解質(zhì)-負極界面處引入保護層是解決上述問題的一種可行辦法,這在最近幾年獲得了學術(shù)界的廣泛關(guān)注。之前的研究中發(fā)現(xiàn)了LiF,LiI,ZnO和h-BN等材料可被用于穩(wěn)定固態(tài)電解質(zhì)和負極之間的界面
2022-08-11 15:08:492108

金屬穿透單晶固態(tài)電解質(zhì)的原位電鏡表征

電池的制造及循環(huán)過程中,鋰金屬與固態(tài)電解質(zhì)界面普遍存在著接觸不充分的情況,這些局部接觸位點通常被稱為“熱點”(“hot spots”)。這些熱點的局部電流密度通常比電池平均電流密度要高得多,因此鋰枝晶往往會從這些熱點部位開始往固態(tài)電解質(zhì)內(nèi)部滲透。
2022-08-31 11:10:57494

濃度極化誘導相變穩(wěn)定聚合物電解質(zhì)中的鋰鍍

本工作利用具有高時間分辨率、成像速度和靈敏度的受激拉曼散射(SRS)顯微鏡研究了固體聚合物電解質(zhì)(SPE)與電極的相互作用。結(jié)果表明,濃差極化并沒有促進晶須的生成,而是降低了鋰/電解質(zhì)界面的鹽濃度,使單相PEO電解質(zhì)轉(zhuǎn)變?yōu)閮上郟EO電解質(zhì)
2022-09-06 10:39:131399

一種實現(xiàn)高性能鋰金屬電池的簡單而有效的策略

電解質(zhì)工程是一種實現(xiàn)高性能鋰金屬電池的簡單而有效的策略,這是因為電解質(zhì)溶液組分的溶劑化結(jié)構(gòu)能夠起到調(diào)控電極/電解質(zhì)界面的作用,對規(guī)整界面化學至關(guān)重要。
2022-09-20 10:17:31624

氟化石墨烯增強聚合物電解質(zhì)用于固態(tài)鋰金屬電池

固體聚合物電解質(zhì)(SPEs)在固態(tài)鋰電池中有著廣闊的應用前景,但目前廣泛應用的PEO基聚合物電解質(zhì)室溫離子電導率和機械性能較差,電極/電解質(zhì)界面反應不受控制,限制了其整體電化學性能。
2022-09-28 09:46:271640

改變電解質(zhì)分布調(diào)控固態(tài)界面實現(xiàn)高性能固態(tài)電池

固-固界面是高性能固態(tài)電池面臨的主要挑戰(zhàn),固體電解質(zhì)(SE)尺寸分布在固態(tài)電池有效界面的構(gòu)筑中起著至關(guān)重要的作用。然而,同時改變復合正極層和電解質(zhì)層的電解質(zhì)尺寸對固態(tài)電池性能,尤其是高低溫性能影響如何,目前尚不明確。
2022-10-21 16:03:221459

相變電解質(zhì)助力高穩(wěn)定性鋰金屬電池

鋰離子電池中除了電極,電解液也是電池中的重要組成部分。典型的液體電解質(zhì)由混合溶劑、鋰鹽和添加劑組成,以上構(gòu)成了經(jīng)典的“溶劑化的陽離子”構(gòu)型
2022-10-25 09:14:44944

關(guān)于高空氣穩(wěn)定性的硫化物固態(tài)電解質(zhì)

重要的一部分,硫化物固體電解質(zhì)因其超高的離子電導率(可達到10-3-10-2與目前液態(tài)電解質(zhì)離子電導率相當)受到了廣泛的關(guān)注。然而傳統(tǒng)的硫化物固體電解質(zhì)存在空氣穩(wěn)定性差、合成成本較高、與鋰負極界面穩(wěn)定性差等問題限制了其商業(yè)化應用,因此如何解決這些問題是實現(xiàn)硫化物固體電解質(zhì)大規(guī)模應用的重點難題。
2022-11-02 11:55:162630

固態(tài)電解質(zhì)中間相的機理探究和設計

鋰(Li)金屬具有高的理論比容量和最低的電化學勢,被視為高能電池負極材料的最終選擇。然而,由枝晶引發(fā)的安全問題阻礙了鋰金屬電池的實際應用。設計穩(wěn)健的人工固體電解質(zhì)界面相(ASEI)可以有效調(diào)節(jié)Li沉積行為,避免枝晶帶來的安全隱患。然而,研究者們對于異質(zhì)界面相的內(nèi)在調(diào)節(jié)機制還未完全闡明。
2022-11-06 22:56:25722

固態(tài)電解質(zhì)引入特殊官能團實現(xiàn)高電壓鋰金屬固態(tài)電池

在基于固體聚合物電解質(zhì)(SPE)的鋰金屬電池中,雙離子在電池中的不均勻遷移導致了巨大的濃差極化,并降低了循環(huán)過程中的界面穩(wěn)定性。
2022-11-16 09:10:531785

如何有效構(gòu)建固體電解質(zhì)的高親鋰界面

固態(tài)電池由于高比能和高安全性被認為是下一代鋰離子電池的候選者。固態(tài)電解質(zhì)是固態(tài)電池的核心部件,立方石榴石型Li7La3Zr2O12(LLZO)固態(tài)電解質(zhì)(SSE)因具有較高的離子電導率、較寬的電化學窗口
2022-11-24 09:23:32701

雙連續(xù)結(jié)構(gòu)在鋰金屬電池彈性電解質(zhì)中的作用

固態(tài)鋰金屬電池(LMBs)有望解決鋰枝晶問題,從而提高電池能量密度和安全性。其中,固體聚合物電解質(zhì)具有成本低、無毒、重量輕等優(yōu)點,適合大規(guī)模生產(chǎn)。
2022-11-24 09:28:44564

金屬電池的鋰微觀結(jié)構(gòu)固體電解質(zhì)界面之間的關(guān)系

電池中,隨著摩爾濃度的增加而降低的過電位似乎是SEI形成后界面電荷轉(zhuǎn)移電阻降低的結(jié)果。在電解質(zhì)中,較大的鋰離子遷移(tLi+)被認為是有利的,因為它延長了位于鋰金屬表面附近的電解質(zhì)中的鋰離子耗盡的時間。
2022-12-06 09:53:151229

基于PPS組裝的鋰金屬電池具有優(yōu)異的循環(huán)穩(wěn)定性和安全性

目前,主要是通過新型電解液添加劑的開發(fā)、人工SEI層和三維(3D)鋰負極的構(gòu)建、隔膜的改性和固態(tài)/半固態(tài)電解質(zhì)的應用等策略穩(wěn)定金屬負極。其中應用固態(tài)/半固體電解質(zhì)策略也是解決傳統(tǒng)液體電池安全問題
2022-12-20 09:33:491048

界面和電極串擾決定了固態(tài)電池的熱穩(wěn)定

熱力學上穩(wěn)定且無反應的SE/Li界面不涉及固體電解質(zhì)界面(SEI)的形成。然而,大多數(shù)SE與金屬鋰在熱力學上是不穩(wěn)定的,這導致了SE的分解和界面的形成。
2022-12-29 14:20:22508

AM:用于安全鋰金屬電池的熱響應電解質(zhì)!

近日,清華大學張強教授和東南大學程新兵教授,設計了一種具有熱響應特性的新型電解質(zhì)體系,極大地提高了1.0 Ah LMBs的熱安全性。具體來說,碳酸乙烯酯(VC)與偶氮二異丁腈作為熱響應溶劑被引入,以提高固體電解質(zhì)界面相(SEI)和電解質(zhì)的熱穩(wěn)定性。
2023-01-10 15:31:42690

開發(fā)相容性高的石榴石-液態(tài)電解質(zhì)界面

混合固液電解質(zhì)概念是解決固態(tài)電解質(zhì)和鋰負極/正極之間界面問題的最佳方法之一。然而,由于高度反應性的化學和電化學反應,在界面處形成的固液電解質(zhì)層在較長的循環(huán)期間會降低電池容量和功率。
2023-01-11 11:04:10720

一種穩(wěn)定的聚合物固態(tài)鋰金屬電池及其界面特性的冷凍電鏡研究

電解質(zhì)的研究和應用仍面臨巨大挑戰(zhàn),例如存在離子電導率低和界面濕潤性差等問題。此外,由于鋰金屬和固態(tài)電解質(zhì)界面被包埋的特性,界面的組分與形態(tài)表征研究存在極大挑戰(zhàn),限制了研究者對固態(tài)鋰金屬電池界面的了解。
2023-01-16 11:07:271011

關(guān)于全固態(tài)鋰金屬電池的高性能硫化物電解質(zhì)?

全固態(tài)電池具有安全、能量密度高、適用于不同場合等優(yōu)點,是最有發(fā)展前景的鋰離子電池之一。硫化物固體電解質(zhì)(SSE)因其良好的離子導電性和加工性而受到人們的歡迎。然而,由于SSE導體暴露在空氣
2023-01-16 17:53:511013

聚合物電解質(zhì)離子電導率及界面穩(wěn)定性的影響因素

高性能固態(tài)電解質(zhì)通常包括無機陶瓷/玻璃電解質(zhì)和有機聚合物電解質(zhì)。由于無機電解質(zhì)與電極之間界面接觸差、界面電阻大等問題,聚合物基固體電解質(zhì)(SPE)和聚合物-無機復合電解質(zhì)因其具有更高的柔性、更好的界面接觸和更易于大規(guī)模生產(chǎn)等優(yōu)勢,被認為是未來全固態(tài)電池更有前景的候選材料。
2023-02-03 10:36:192049

金屬電解質(zhì)的高壓與高溫穩(wěn)定性探究

高能鋰金屬電池的關(guān)鍵挑戰(zhàn)是樹枝狀鋰的形成、差的CE以及與高壓正極的兼容性問題。為了解決這些問題,一個核心策略是設計新型電解質(zhì)。
2023-03-25 17:02:041125

鈉-鉀電解質(zhì)界面相實現(xiàn)室溫/0°C固態(tài)鈉金屬電池研究

基于無機固態(tài)電解質(zhì)金屬電池因其能量密度和安全性的優(yōu)勢在電化學儲能領(lǐng)域具有巨大應用潛力。
2023-03-30 10:54:39524

復合凝膠電解質(zhì)中無機填料助力鋰金屬電池富無機物SEI的形成

電解質(zhì)作為與鋰金屬直接接觸的成分,它們所產(chǎn)生的電極/電解質(zhì)界面(EEI,包括電解質(zhì)/正極或電解質(zhì)/負極界面)的性質(zhì)與電解質(zhì)的成分密切相關(guān),同時對于鋰金屬穩(wěn)定性有著很大的影響。
2023-04-06 14:11:541091

揭示表面微觀結(jié)構(gòu)對石榴石型電解質(zhì)的Li潤濕性和界面離子傳輸?shù)挠绊?/a>

固態(tài)電解質(zhì)與電極間界面相親性

本文從電極與非液態(tài)電解質(zhì)界面處電化學反應的本質(zhì)出發(fā),闡明電極與非液態(tài)電解質(zhì)界面相親性的基本內(nèi)容及其對電極電化學儲能性能的影響機制。
2023-04-15 17:04:52642

雜化動態(tài)共價網(wǎng)絡用作鋰金屬電池保護層和固態(tài)電解質(zhì)

電池(LMB)的商業(yè)化有兩個嚴重的問題:不可控的鋰枝晶生長問題和不穩(wěn)定的固態(tài)電解質(zhì)界面(SEI)問題。(1)由于循環(huán)過程中負極側(cè)不均勻的鋰沉積,不可控的鋰枝晶生長會導致電池庫侖效率(CE)低、內(nèi)部短路甚至失效(圖示1a)。(2)鋰金屬與有機電解質(zhì)反應形成的本征SEI膜具有機械脆性,無法
2023-05-11 08:47:29521

固態(tài)電解質(zhì)電導性 (Solid系列)

團體標準《固態(tài)鋰電池用固態(tài)電解質(zhì)性能要求及測試方法》指出固態(tài)電解質(zhì)性能優(yōu)劣的最主要性能指標為離子電導率、電子電導率和界面穩(wěn)定性,其中最核心的是界面控制。 川源科技結(jié)合當前實際需求,在原有粉末電導率的平臺上開發(fā)了新一代的一站式固體電解質(zhì)電導性及其電化學性能的評價系統(tǒng)--Solid X
2023-06-25 16:43:28463

用于鈉金屬電池的NASICON固態(tài)電解質(zhì)的超快合成

NASICON結(jié)構(gòu)固態(tài)電解質(zhì)(SSEs)作為一種非常有前途的鈉固態(tài)金屬電池(NaSMB)材料,由于其在潮濕環(huán)境中具有優(yōu)異的穩(wěn)定性、高離子導電性和安全性,因此受到了廣泛關(guān)注。
2023-08-23 09:43:42904

利用三甲基硅化合物改善硫酸鹽固態(tài)電解質(zhì)與陰極材料的界面穩(wěn)定

這篇研究文章的背景是關(guān)于固態(tài)鋰電池(ASSBs)中硫化物基固態(tài)電解質(zhì)界面穩(wěn)定性問題。
2023-11-01 10:41:23407

人工界面修飾助力高性能鋰金屬電池的最新研究進展與展望!

金屬負極的能量密度很高,當與高電壓正極結(jié)合時,鋰金屬電池可以實現(xiàn)接近 500 Wh kg?1 的能量密度。然而,鋰金屬負極并不穩(wěn)定,會與電解質(zhì)反應生成固體電解質(zhì)界面 (SEI)。
2024-01-02 09:08:56401

介電填料誘導雜化界面助力高負載鋰金屬電池

采用高安全和電化學穩(wěn)定的聚合物固態(tài)電解質(zhì)取代有機電解液,有望解決液態(tài)鋰金屬電池的產(chǎn)氣和熱失控等問題。
2024-01-22 09:56:02204

弱溶劑化少層碳界面實現(xiàn)硬碳負極的高首效和穩(wěn)定循環(huán)

鈉離子電池碳基負極面臨著首次庫倫效率低和循環(huán)穩(wěn)定性差的問題,目前主流的解決方案是通過調(diào)節(jié)電解液的溶劑化結(jié)構(gòu),來調(diào)節(jié)固體電解質(zhì)界面(SEI),卻忽略了負極-電解界面對于溶劑化鞘的影響。
2024-01-26 09:21:38283

已全部加載完成